首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This review summarizes recent progress in the development and application of solid electrodes to the screening of pharmaceutical dosage forms and biological fluids. Recent trends and advances in the electroanalytical chemistry of solid electrodes, microelectrodes and electrochemical sensors are reviewed. The varieties of solid electrodes and their basic physico-chemical properties and some specific characteristics including some supramolecular phenomena at their surface are surveyed. This review also includes some selected designs and their applications. Despite many reviews about individual solid electrodes in the literature, this review offers the first comprehensive report on all forms of solid electrodes. Special attention is paid to the possibilities of solid electrodes in high throughput electroanalytical investigation of drug dosage forms and biological samples using modern electroanalytical techniques. Various selected studies on these subjects since 1996 are reviewed in this paper.  相似文献   

2.
The production of functional activated carbon materials starting from cheap natural precursors using environmentally friendly processes is a highly attractive subject in material chemistry today. Recently, much attention has been focused on the use of plant biomass to produce functional carbonaceous materials, encompassing economic, environmental and social issues. Besides the classical route to produce activated carbons from fossil materials, rice husk shows clear advantages in that it can generate a variety of cheap and sustainable carbonaceous materials with attractive nanostructure and functional patterns for a wide range of applications. From a comprehensive literature review, it was found that porous carbon that derived from rice husks, in addition to having wide availability, has fast kinetics and appreciable adsorption capacities too. Porous carbon materials also play a significant role in new applications such as catalytic supports, battery electrodes, capacitors, and gas storage. In this review, an extensive list of rice husks literature has been compiled. Conclusions have been drawn from the literature reviewed, and suggestions for future research are proposed.  相似文献   

3.
Papers dealing with modified electrodes made of carbon materials and composites for use in stripping voltammetry of metals have been reviewed. The review consists of two parts, of which the first considers applications of modified glassy carbon and carbon paste electrodes, while the second describes diverse modified carbon-containing composite and microscopic electrodes. Information about modifiers, electrode modification methods, conditions, and limits of detection of elements in different materials has been tabulated. The review covers 550 papers published in Russia and abroad between 1990 and the first half of 2007.  相似文献   

4.
Superwettable materials have attracted much attention due to their fascinating properties and great promise in several fields. Recently, superwettable materials have injected new vitality into electrochemical biosensors. Superwettable electrodes exhibit unique advantages, including large electrochemical active areas, electrochemical dynamics acceleration, and optimized management of mass transfer. In this review, the electrochemical reaction process at electrode/electrolyte interfaces and some fundamental understanding of superwettable materials are discussed. Then progress in different electrodes has been summarized, including superhydrophilic, superhydrophobic, superaerophilic, superaerophobic, and superwettable micropatterned electrodes, electrodes with switchable wettabilities, and electrodes with Janus wettabilities. Moreover, we also discussed the development of superwettable materials for wearable electrochemical sensors. Finally, our perspective for future research is presented.

The recent progress of superhydrophilic/phobic electrodes, superaerophilic/phobic electrodes, superwettable patterned electrodes, Janus wettability electrodes and wettability switchable electrodes in electrochemical biosensing is reviewed.  相似文献   

5.
《Analytical letters》2012,45(5):817-853
Abstract

Carbon and its derivatives, as the high performance material, occupy a special place in electrochemistry due to its ‐in many ways‐ extreme properties. Recent trends and advances in the electrochemistry of carbon‐based electrodes are reviewed. The varieties of carbon‐based electrodes, their basic physicochemical properties and some characteristics are surveyed. Special attention is paid to the possibilities of carbon‐based electrodes in electroanalytical investigation in pharmaceutical dosage forms and biological samples using modern electrochemical techniques. This review includes a summary of the rules that must be considered for drug analysis from its dosage forms and biological samples using carbon‐based electrodes. The present review is the first comprehensive report on the heterogeneous and homogeneous carbon electrodes, and an addition to many excellent reviews on carbon electrodes in the literature. This review summarizes some of the recent developments and applications of carbon‐based electrodes for drug compounds in their dosage forms and in biological samples in the period from 1996 till 2006. Also some further selected designs (screen‐printed; carbon nanotubes, etc.) and applications have been discussed.  相似文献   

6.
Electrochemical lithium extraction methods have recently attracted significant attention as alternatives to the currently employed techniques. A considerable effort has been made to develop this technology, especially in searching Li-ion selective electrodes. However, much less attention has been paid to the counter electrodes. In general, these materials have been used as counterparts without considering their influence in the global method. This review summarizes the counter electrodes, analyzing their pros and cons. In addition, the energy efficiency of the various configurations was reported, while the other performance indices were not included because of the lack of data provided in the literature. Nevertheless, their potential influence in crucial parameters like purity, efficiency, or stability was estimated based on their electrochemical properties. This review demonstrates that specific studies on the counter electrodes and an effort to develop alternative materials are needed to push the current electrochemical lithium extraction method toward a new level.  相似文献   

7.
Ion-selective membrane electrodes commonly known as electrochemical sensors are important in view of the ability to make direct or indirect measurement of various metal ions. The fact is that the use of ion-selective electrodes for such type of measurements requires relatively inexpensive equipment, which makes ion-selective electrodes attractive to scientists in many disciplines. Thus, potentometric sensors can offer an inexpensive and convenient method for the analysis of heavy metal ions in solutions providing acceptable sensitivity and selectivity. For this purpose, many organic, inorganic, chelating, intercalating and composite materials were studied as electroactive materials for the preparation of ion-selective membrane electrodes. The present study provides a detailed review of literature for the fabrication, characterization and analytical applications of ion-selective membrane electrode based on different electro active components.  相似文献   

8.
Electrochemical supercapacitors (ECs), characteristic of high power and reasonably high energy densities, have become a versatile solution to various emerging energy applications. This critical review describes some materials science aspects on manganese oxide-based materials for these applications, primarily including the strategic design and fabrication of these electrode materials. Nanostructurization, chemical modification and incorporation with high surface area, conductive nanoarchitectures are the three major strategies in the development of high-performance manganese oxide-based electrodes for EC applications. Numerous works reviewed herein have shown enhanced electrochemical performance in the manganese oxide-based electrode materials. However, many fundamental questions remain unanswered, particularly with respect to characterization and understanding of electron transfer and atomic transport of the electrochemical interface processes within the manganese oxide-based electrodes. In order to fully exploit the potential of manganese oxide-based electrode materials, an unambiguous appreciation of these basic questions and optimization of synthesis parameters and material properties are critical for the further development of EC devices (233 references).  相似文献   

9.
Brainina KZ 《Talanta》1987,34(1):41-50
The possibilities of voltammetry as a source of information in bioelectrochemistry, electro-chemistry solid-state chemistry and analytical chemistry are reviewed. Attention is drawn to the use of catalytic currents and adsorption, inverse voltammetry, and solid and modified electrodes. The review mainly covers papers published in 1983 and 1984, especially those in the Soviet literature.  相似文献   

10.
有机电极材料具有理论比容量大、结构可设计性强、加工使用过程环境友好等优点被广泛应用于二次电池的研究中.有机电极材料在氧化还原过程会产生具有不成对电子的自由基中间体,自由基中间体的稳定程度影响电极材料的电化学性能.通过改变材料的结构可以调控自由基中间体的稳定性,从而优化有机电极材料的电化学性能.本文对有机电极材料在电化学...  相似文献   

11.
The literature related to the incorporation of transition metal ions (TMI) into aluminophosphate (AlPO) and silicoaluminophosphate (SAPO) molecular sieves is reviewed. Microporous crystalline metal aluminophosphates (MeAPOs) and metal silicoaluminophosphates (MeAPSOs) represent an important group of inorganic materials because of their high potential as adsorbents and catalysts. This review focuses mainly on the spectroscopic characterization of TMI containing MeAPOs and MeAPSOs covering the literature through 2000. The characterization of these materials is summarized and discussed in the light of possible isomorphous substitution of transition metal ions into the aluminophosphate framework. Moreover, the literature devoted to the use of these materials in catalysis and adsorption is reviewed.  相似文献   

12.
Insights into the electrolysis of analytes at the electrode surface of an electrospray (ES) emitter capillary are realized through an examination of the results from off-line chronopotentiometry experiments and from mass transport calculations for flow through tubular electrodes. The expected magnitudes and trends in the interfacial potential in an ES emitter under different solution conditions and current densities, using different metal electrodes, are revealed by the chronopotentiometry data. The mass transport calculations reveal the electrode area required for complete analyte electrolysis at a given volumetric flow rate. On the basis of these two pieces of information, the design of ES emitters that may maximize and those that may minimize analyte electrolysis during ES mass spectrometry are discussed.  相似文献   

13.
碳纳米管用作超级电容器电极材料   总被引:3,自引:0,他引:3  
碳纳米管由于具有化学稳定性好、比表面积大、导电性好和密度小等优点,是很有前景的超级电容器电极材料。本文介绍了碳纳米管用作超级电容器电极材料的研究现状,总结了单纯碳纳米管电极材料和碳纳米管复合物电极材料的特点与性能,并探讨了今后碳纳米管电极材料的发展方向。  相似文献   

14.
A review is given of the principles, key developments and representative applications of small electrodes in flow-through electrochemical (ec) detectors having very low effective dead volume (<10 μl) for voltammetric and amperometric detection in flowing solutions. Emphasis is placed on factors contributing to high sensitivity, reliability and selectivity of ec detection as an integral part of larger analytical systems utilizing continuously flowing, unsegmented streams, e.g., flow-injection and liquid chromatographic analyses. Solid and mercury electrodes are considered under potentiostatic and potentiodynamic control. A review is given also of auxiliary chemical and photolytic derivatizations coupled to ec detection. The majority of the literature on the subject relates to liquid chromatography with electrochemical detection (l.c./ec); however, applications to these concepts to specific examples in flow-injection systems, as well as for on-line process control, should be obvious. Details of chromatographic separations and design of total analytical systems are not reviewed.  相似文献   

15.
This review covers recent advances in conjugated polymers and their application in energy storage. Conjugated polymers are promising cost-effective, lightweight, and flexible electrode materials. The operating principles of conjugated polymers are presented within the framework of their potential for energy storage. Special focus is given to polyaniline electrodes. Recent advances are reviewed including new methods of synthesis, nanostructuring, and assembly. Also, covered are applications that take full advantage of the mechanical properties of conjugated polymers and future applications of these novel materials. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

16.
《Electroanalysis》2017,29(3):652-661
The modifications of electrodes using graphene and graphene composites in microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) have been widely applied for enhancing the electrochemical catalytic activity and performance of MFCs and MECs. Graphene as one of advanced materials has shown outstanding features for promoting practical applications of MFCs. This review summarizes the modification methods and characterization methods of graphene and related graphene composites on electrode surfaces in MFCs and MECs. The performance improvements of MFCs and MECs by various graphene related composites have been reviewed, which will provide an efficient guide for selecting suitable graphene material to modify electrodes in MFCs and MECs for improving their performance.  相似文献   

17.
&#;zkan  S. A. 《Chromatographia》2007,66(1):3-13
Many pharmaceutical compounds have electroactive groups and are readily measurable and detectable by liquid chromatography with electrochemical detection (LC–EC). LC–EC techniques have many advantages as measurement systems and new materials have been developed for working electrodes. Use of modern electroanalytical techniques for detection in LC of pharmaceutical compounds is discussed in this review. EC detection in LC often results in improved selectivity and detection limits for electroactive pharmaceutical compounds. Selected literature on the determination of pharmaceutical compounds in their dosage forms and in biological samples are reported.  相似文献   

18.
In the last few decades, organic solar cells (OSCs) have drawn broad interest owing to their advantages such as being low cost, flexible, semitransparent, non-toxic, and ideal for roll-to-roll large-scale processing. Significant advances have been made in the field of OSCs containing high-performance active layer materials, electrodes, and interlayers, as well as novel device structures. Particularly, the innovation of active layer materials, including novel acceptors and donors, has contributed significantly to the power conversion efficiency (PCE) improvement in OSCs. In this review, high-performance acceptors, containing fullerene derivatives, small molecular, and polymeric non-fullerene acceptors (NFAs), are discussed in detail. Meanwhile, highly efficient donor materials designed for fullerene- and NFA-based OSCs are also presented. Additionally, motivated by the incessant developments of donor and acceptor materials, recent advances in the field of ternary and tandem OSCs are reviewed as well.  相似文献   

19.
The accurate determination of analyte concentrations with selective, fast, and robust methods is the key for process control, product analysis, environmental compliance, and medical applications. Enzyme-based biosensors meet these requirements to a high degree and can be operated with simple, cost efficient, and easy to use devices. This review focuses on enzymes capable of direct electron transfer (DET) to electrodes and also the electrode materials which can enable or enhance the DET type bioelectrocatalysis. It presents amperometric biosensors for the quantification of important medical, technical, and environmental analytes and it carves out the requirements for enzymes and electrode materials in DET-based third generation biosensors. This review critically surveys enzymes and biosensors for which DET has been reported. Single- or multi-cofactor enzymes featuring copper centers, hemes, FAD, FMN, or PQQ as prosthetic groups as well as fusion enzymes are presented. Nanomaterials, nanostructured electrodes, chemical surface modifications, and protein immobilization strategies are reviewed for their ability to support direct electrochemistry of enzymes. The combination of both biosensor elements—enzymes and electrodes—is evaluated by comparison of substrate specificity, current density, sensitivity, and the range of detection.  相似文献   

20.
杨勇  李骏 《电化学》1996,2(4):363-371
贮氢合金材料电化学与表面性能的研究进展①杨勇李骏林祖赓(厦门大学化学系,固体表面物理化学国家重点实验室,厦门361005)八十年代后期以来,人们对地球的环境保护提出了更高的要求,而便携式电器(如移动电话,摄像机与笔记本电脑等)对电池的需求也大量增加...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号