首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A method for the determination of 11 UV-filter compounds in sludge has been developed and evaluated. The procedure includes the use of non-porous polymeric membranes in combination with pressurised liquid extraction (PLE). Firstly, the solid sample, wetted with the extraction solvent, was enclosed into tailor-made bags prepared with low density polyethylene. Secondly, these packages were submitted to a conventional PLE (70 °C, 4 cycles of 5 min static time). Finally, the analytes were determined by liquid chromatography–atmospheric pressure photoionisation–tandem mass spectrometry. The main advantage of this procedure is the reduction of time, solvent and labour effort ought to the combination of extraction and clean-up in a single step. Although the extraction is not quantitative (thus, standard addition is recommended for quantification) selectivity is clearly gained using the membrane as a consequence of the differences of permeation and transport through the membrane between the analytes and other sample matrix components. The optimised protocol provides limits of detection ranging from 0.3 ng g−1 (ethylhexyl dimethyl p-aminobenzoate (OD-PABA)) to 25 ng g−1 (ethylhexyl triazone (EHT)) with only 0.5 g of sludge sample. All the studied UV filters were found in the samples at concentration levels between 1.4 and 2479 ng g−1, emphasising the high adsorption potential of this kind of environmental pollutants onto solid samples such as sludge. Also, this method has permitted the determination of seven of the studied UV filters in sludge samples for the first time.  相似文献   

2.
The pressurized liquid extraction (PLE) followed by dispersive liquid–liquid micro‐extraction (DLLME) has been developed for extraction of volatile components in tobacco. 35 volatile components were detected by gas chromatography mass spectrometry (GC‐MS). Methanol–methyl tert‐butyl ether (MTBE) (8:2, v/v) was selected as PLE extraction solvent. The optimized DLLME procedure, 3 mL of pure water and 1.0 mL tobacco extract solution, 40 μL of chloroform as extraction solvent, 0.5 mL of acetonitrile as disperser solvent, was validated. Under the optimum conditions, the enrichment factors were in the range of 96‐159. The limits of detection were between 0.14 and 0.33 μg/kg. The repeatability of the proposed method, expressed as relative standard deviation, varied between 4.3 and 7.5% (n = 6). The recoveries of the analytes evaluated by fortification of tobacco samples were in the range of 84.7‐96.4%. Compared with the conventional sample preparation method for determination of volatile components in tobacco, the proposed method was quick and easy to operate, and had high‐enrichment factors and low consumption of organic solvent.  相似文献   

3.
In this paper, ultrasonic-assisted extraction of 3-chloropropane-1,2-diol and its esters from edible oils was studied with isotope dilution GC-MS. Effects of several experimental parameters, such as types and concentrations of extracting solvent, ratios of liquid to material, extraction temperature, time of ultrasonic treatment on the extraction efficiency of 3-chloropropane-1,2-diol and its esters from edible oils and sample preparation for calibration were compared and optimized. The optimal extraction conditions were suggested as 66 mg oil sample in mixture of 0.5 mL MTBE/ethyl acetate (20% v/v) and 0.5 mL of sulfuric acid/n-propanol (0.3% v/v), being extracted for 30 min at 45°C under ultrasonic irradiation. Good linearity was gained in the range of 0.020-5.000 μg/g with the limit of detection (LOD) of 0.006 μg/g (S/N = 3) and the limit of quantification (LOQ) of 0.020 μg/g (S/N = 10). The recoveries at five spiked concentrations were ranged from 91.9 to 109.3% with RSD less than 9.4%. The method was successfully applied to the determination of 3-chloropropane-1,2-diol and its esters amounts in rapeseed, sesame, peanut, camellia, and soybean oils.  相似文献   

4.
Shu MW  Leong MI  Fuh MR  Huang SD 《The Analyst》2012,137(9):2143-2150
Manual shaking-enhanced, ultrasound-assisted emulsification microextraction (MS-USAEME) combined with ultraperformance liquid chromatography (UPLC) with UV detection has been developed for the determination of five endocrine-disrupting phenols (EDPs) in seawater samples and detergent samples: 4-tert-butylphenol (4-t-BP), 4-cumylphenol (4-CP), 4-tert-octylphenol (4-t-OP), 2,4-di-tert-butylphenol (2,4-di-t-BP) and 4-nonylphenol (4-NP). Optimum conditions were found to be: 25 μL 1-bromohexadecane as extraction solvent, 5 mL of aqueous sample and 1 g of NaCl to control the ionic strength; manual shaking for 10 s; ultrasonication for 1 min; centrifugation for 3 min at 5000 rpm (speed). For MS-USAEME, manual shaking for 10 s is essential for effective extraction when the ultrasonic extraction time is as brief as 1 min. The small volume of aqueous sample enhances the effect of manual shaking significantly. For seawater samples, the limit of detection (LOD) was 0.5-2.8 ng mL(-1), the limit of quantification (LOQ) was 1.8-9.3 ng mL(-1) with the relative standard deviation (RSD) in the range 4.2-10.3%. For detergent samples, the LOD was 0.4-2.4 ng mL(-1), LOQ was 1.6-8.2 ng mL(-1) and RSD 4.7-10.0%. The relative recovery was 96-109% for seawater samples and 81-106% for the detergent samples.  相似文献   

5.
A new method involving matrix solid-phase dispersion (MSPD) extraction and hydrophilic interaction ultra-high-pressure liquid chromatography (HILIC-UHPLC) with photodiode array detection was developed for the determination of carbadox and olaquindox in feed. Separation of carbadox and olaquindox was achieved within 1 min on the 1.7 microm Acquity UPLC BEH HILIC column by using isocratic elution with a mobile phase consisting of 10 mmol L(-1) ammonium acetate in acetonitrile-water (95:5, v/v) at a flow rate of 0.5 mL min(-1). Optimization of MSPD extraction parameters, such as type of solid sorbent and elution solvent were carried out. Optimal conditions selected for MSPD extraction were: 0.25 g of feed sample, 0.5 g of octadecylsilica as solid sorbent and 10 mL of acetonitrile-methanol (8:2, v/v) as eluting solvent. Both analytes provided average recoveries from spiked feed samples ranging from 89.1 to 98.4% with relative standard deviations less than 10%. Obtained performance characteristics are comparable to those achieved by liquid-liquid extraction-HPLC with the advantages of being simpler and significantly faster.  相似文献   

6.
液相色谱-串联四极杆质谱法测定牛奶中128种农药残留   总被引:11,自引:0,他引:11  
郑军红  庞国芳  范春林  王明林 《色谱》2009,27(3):254-263
建立了牛奶中128种农药残留的液相色谱-串联质谱检测方法。10 mL牛奶用20 mL乙腈(加4 g硫酸镁和1 g氯化钠)振荡提取两次,上清液浓缩后经C18固相萃取柱(2000 mg填料)净化以除去提取液中的亲脂性化合物等干扰杂质,洗脱液浓缩至约0.5 mL后,于45 ℃下用氮气吹干,加1 mL乙腈-水(体积比为3:2)定容,超声溶解30 s,经0.2 μm微孔滤膜过滤,液相色谱-电喷雾串联质谱测定。2倍检出限和8倍检出限两个添加水平的5次平行实验结果表明: 128种农药在低添加水平(0.14 μg/L~0.62 mg/L)下回收率范围为60.4%~118.4%,相对标准偏差为2.1%~24.3%;高添加水平(0.56 μg/L~2.48 mg/L)下的回收率范围为64.4%~118.5%,相对标准偏差为1.3%~24.1%。各种农药在确定的添加范围内线性关系良好,相关系数高于0.99,方法的检出限(LOD)为0.07 μg/L~0.31 mg/L。该方法通用性强、选择性好、灵敏度高,快速简便。  相似文献   

7.
In the present study, dispersive liquid–liquid microextraction followed by high performance liquid chromatography‐diode array detection has been developed as simple, rapid, accurate, and efficient sample preparation method for simultaneous determination of seven organic UV filters in urine samples. The influence of the main effects as well as their interactions was studied through a 2(6–2) fractional factorial design. The candidate parameters were: type and volume of dispersant and extraction solvents, sample pH, and salt concentration. Under final optimal conditions, the analytes were extracted from 5 mL of samples by addition of 0.5 mL of acetonitrile (dispersing solvent) containing 70 μL of carbon tetrachloride (extraction solvent), without modifying the pH of the solution and applying the (+1) level of salt concentration (10% w/v NaCl). The assay was linear (R2 > 0.997), relative recoveries ranged from 86.9 up to 97.3% and the LOQs between 3 and 45 ng mL?1 were obtained. The intra‐ and interday RSDs were lower than 5 and 8% at the middle point of the linear range, respectively. The proposed method was successfully applied to different volunteer urine samples and it was shown that the extraction efficiency was not affected by the type of urine samples.  相似文献   

8.
A simple, rapid, and precise reversed-phase high-performance liquid chromatographic method for the simultaneous determination of lamivudine, tenofovir disoproxil fumarate and efavirenz in bulk and tablet dosage form has been developed and validated. Chromatography was performed on a 150 mm × 4.6 mm i.d., 5-μm particle, Phenomenex Luna C18 column with 30: 45: 25 (v/v/v) acetonitrile: methanol: water as mobile phase at a flow rate of 0.5 mL/min. UV detection was done at 258 nm; lamivudine, tenofovir disoproxil fumarate and efavirenz were eluted with retention times of 3.27, 4.58 and 10.90 min, respectively. The method was validated in accordance with ICH guidelines. Validation revealed the method is specific, rapid, accurate, precise, reliable and reproducible. Calibration plots were linear over the concentration ranges 1–6 μg/mL for lamivudine and tenofovir disoproxil fumarate and 2–12 μg/mL for efavirenz. Limits of detection were 0.05, 0.09 and 0.11 μg/mL and limits of quantification were 0.15, 0.28 and 0.34 μg/mL for lamivudine, tenofovir disoproxil fumarate and efavirenz, respectively. The high recovery and low coefficients of variation confirm the suitability of the method for the simultaneous determination of these three drugs in bulk and tablets.  相似文献   

9.
Simultaneous determination of three herbicides (dicamba, 2,4-D, and atrazine) has been achieved by on-line solid-phase extraction (SPE) coupled to multisyringe chromatography (MSC) with UV detection. The preconcentration conditions were optimized; a preconcentration flow rate of 0.5 mL min(-1) and elution at 0.8 mL min(-1) were the optimum conditions. A C(18) (8 mm i.d.) membrane extraction disk conditioned with 0.3 mol L(-1) HCl in 0.5% MeOH was used. A 3-mL sample was preconcentrated, then eluted with 0.43 mL 40:60 water-MeOH. A C(18) monolithic column (25 mm × 4.6 mm) was used for chromatographic separation. Separation of the three compounds was achieved in 10 min by use of 0.01% aqueous acetic acid-MeOH (60:40) as mobile phase at a flow rate of 0.8 mL min(-1). The limits of detection (LOD) were 13, 57, and 22 μg L(-1) for dicamba, 2,4-D, and atrazine, respectively. The sampling frequency was three analyses per hour, and each analysis consumed only 7.3 mL solvent. The method was applied to spiked water samples, and recovery between 85 and 112% was obtained. Recovery was significantly better than in the conventional HPLC-UV method. These results indicated the reliability and accuracy of this flow-based method. This is the first time this family of herbicides has been simultaneously analyzed by on-line SPE-MSC using a monolithic column.  相似文献   

10.
A simple, rapid, and sensitive method based on dispersive liquid–liquid microextraction combined with HPLC‐UV detection applied for the quantification of chlordiazepoxide in some real samples. The effect of different extraction conditions on the extraction efficiency of the chlordiazepoxide drug was investigated and optimized using central composite design as a conventional efficient tool. Optimum extraction condition values of variables were set as 210 μL chloroform, 1.8 mL methanol, 1.0 min extraction time, 5.0 min centrifugation at 5000 rpm min?1, neutral pH, 7.0% w/v NaCl. The separation was reached in less than 8.0 min using a C18 column using isocratic binary mobile phase (acetonitrile/water (60:40, v/v)) with flow rate of 1.0 mL min?1. The linear response (r2 > 0.998) was achieved in the range of 0.005–10 μg mL?1 with detection limit 0.0005 μg mL?1. The applicability of this method for simultaneous extraction and determination of chlordiazepoxide in four different matrices (water, urine, plasma, and chlordiazepoxide tablet) were investigated using standard addition method. Average recoveries at two spiking levels were over the range of 91.3–102.5% with RSD < 5.0% (n = 3). The obtained results show that dispersive liquid–liquid microextraction combined with HPLC‐UV is a fast and simple method for the determination of chlordiazepoxide in real samples.  相似文献   

11.
A three-phase hollow-fiber liquid-phase microextraction (HF-LPME) method for the stereoselective determination of bufuralol metabolites 1'-oxobufuralol (1'-Oxo-BF) and 1'-hydroxybufuralol (1'-OH-BF) in microsomal preparations is described for the first time. The HPLC analysis was carried out using a Chiralcel OD-H column with hexane/2-propanol/methanol (97.5:2.0:0.5, v/v/v) plus 0.5% diethylamine as the mobile phase, and UV detection at 248 and 273 nm. The HF-LPME optimized conditions involved: n-octanol as the organic solvent, 0.2 mol/L acetic acid as the acceptor phase, donor phase pH adjusted to 13, sample agitation at 1500 rpm and extraction for 30 min. By using this extraction procedure, the recovery rates were in the range of 63-69%. The method was linear over the concentration range of 100-5000 ng/mL for each enantiomer of 1'-Oxo-BF (r>0.9978) and of 100-2500 ng/mL for each stereoisomer of 1'-OH-BF (r>0.9957). The quantification limits were 100 ng/mL for all analytes. The validated method was used to assess the in vitro biotransformation of bufuralol using rat liver microsomal fraction that demonstrated predominant formation of (S)-1'-Oxo-BF and (R,R)-1'-OH-BF.  相似文献   

12.
《中国化学会会志》2018,65(8):989-994
In this study, an electromembrane extraction (EME) method combined with a simple HPLC‐UV analysis was developed and validated for the determination of valproic acid in human plasma samples. The major parameters influencing EME procedure, namely the solvent composition, voltage, pH of acceptor and donor solutions, salt effect, and time of extraction, were evaluated and optimized. The drug was extracted from the donor aqueous sample solution (pH 5) to the acceptor aqueous solution (pH 13). The donor and acceptor phases were separated by a hollow fiber dipped in 1‐octanol as a supported liquid membrane. A voltage of 60 V during 25 min was applied as the driving force. The drug concentration enrichment factor obtained was >125, which enhanced the sensitivity of the method. The limit of detection and the limit of quantitation were 0.2 and 0.5 μg/mL, respectively. The proposed method was successfully applied to a human plasma sample, with a relative recovery of 75%. The method was linear over the range 0.5–10 μg/mL for valproic acid (R2 > 0.9996) with a repeatability (%RSD) between 0.9 and 3.3% (n = 3). Valproic acid is an anticonvulsant drug with poor UV absorption, and EME can improve the sensitivity of HPLC‐UV for the determination of valproic acid in plasma samples.  相似文献   

13.
A supramolecular solvent consisting of reverse micelles of decanoic acid, dispersed in a continuous phase of tetrahydrofuran:water, was proposed as an efficient microextraction technique for extraction of selected chlorophenoxy acid herbicides from water samples prior to high-performance liquid chromatography UV determination. The disperser solvent (1.0 mL tetrahydrofuran) containing 20 mg decanoic acid was rapidly injected into 10.0 mL of water sample. After centrifugation, the reverse micelle-rich phase (25 ± 0.5 μL) was floated at top of the home-designed centrifuge tube. The solvent was collected and 20 μL of it was injected into high-performance liquid chromatography for analysis. The results showed that the in situ solvent formation and extraction process can be completed in a few seconds. Under the optimal conditions, limits of detection of the method for 4-chloro-2-methylphenoxyacetic acid and 2,4-dichlorophenoxyacetic acid were in the range of 0.5-0.8 μg L(-1) and the repeatability of the proposed method, expressed as relative standard deviation, varied in the range of 2.5-3.2%. Linearity was found to be in the range of 1-200 μg L(-1) and the preconcentration factors were between 148 and 157. The mean percentage recoveries exceeded 92.0% for all the spiking levels in real water samples.  相似文献   

14.
A method for the quantitative determination of ten pharmaceuticals in sewage sludge was developed by using pressurized liquid extraction (PLE) and HPLC-MS with ESI (HPLC-(ESI)MS). The PLE was optimized with regard to solvents and operational parameters, such as temperature, pressure, extraction time, and purge time. The optimum conditions were: 50 mM phosphoric acid/methanol (1:1 v/v) as the extraction solvent, temperature of 100 degrees C, pressure of 100 bar, extraction time 15 min, 2 cycles, flush volume 150% and purge time 300 s. All recoveries for pharmaceuticals were over 68% except for salicylic acid. The repetitivity and reproducibility between days expressed as RSD was lower than 8% for repetitivity and 10% for reproducibility. The LOD of all compounds was lower than 10 microg/kg of dry weight of sewage sludge. The method was applied to determine the pharmaceuticals in sewage sludge from two domestic sewage treatment plants (STPs). The samples were collected every three months between February 2004 and June 2005. Some pharmaceuticals were determined in the samples and naproxen showed the highest value (242 microg/kg of dry weight).  相似文献   

15.
A method for the quantitative determination of ten musk fragrances extensively used in personal care products from sewage sludge was developed by using a pressurized liquid extraction (PLE) followed by an automated ionic liquid‐based headspace single‐drop microextraction and gas chromatography‐tandem mass spectrometry. The influence of main factors on the efficiency of PLE was studied. For all musks, the highest recovery values were achieved using 1 g of pretreated sewage sludge, H2O/methanol (1:1) as an extraction solvent, a temperature of 80°C, a pressure of 1500 psi, an extraction time of 5 min, 2 cycles, a 100% flush volume, a purge time of 120 s, and 1 g Florisil as in‐cell clean‐up extraction sorbent. The use and optimization of an in‐cell clean‐up sorbent was necessary to remove fatty interferents of the PLE extract that make the subsequent ionic liquid‐based headspace single‐drop microextraction difficult. Validation parameters, namely LODs and LOQs, ranged from 0.5–1.5 to 2.5–5 ng/g, respectively. Good levels of intra‐ and interday repeatabilities were obtained analyzing sewage sludge samples spiked at 10 ng/g (n = 3, RSDs < 10%). The method applicability was tested with sewage sludge from different wastewater treatment plants. The analysis revealed the presence of all the polycyclic musks studied at concentrations higher than the LOQs, ranging from 6 to 530 ng/g. However, the nitro musk concentrations were below the LOQs or, in the case of musk xylene, was not detected.  相似文献   

16.
A simple and sensitive GC-EI-MS method using solvent extraction and evaporation was developed for the determination of olanzapine concentrations in plasma samples. Because olanzapine and promazine, which was used as the internal standard (IS), are nitrogenous bases, they can adsorb to the weakly acidic silanol groups on the surfaces of glass centrifuge tubes during solvent extraction and evaporation. Silylation of the glass tubes, addition of triethylamine (TEA), and use of a sample solution with a basic pH could prevent adsorption loss. The extraction method involved mixing plasma (500 μL) in a silylated glass tube with a promazine solution (2 μg/mL, 25 μL) in methanol containing 1% TEA. After addition of aqueous sodium carbonate (0.5 mol/L, pH 11.1, 1 mL) and extraction into 3 mL of dichloromethane/n-hexane (1:1, v/v) containing 1% TEA, the organic phase was evaporated to dryness in a silylated glass tube. The residue was dissolved in ethyl acetate containing 1% TEA (50 μL). For GC-EI-MS analysis, the calibration curves of olanzapine in human plasma were linear from 0.5 to 100 ng/mL. Intra- and interday precisions in plasma were both less than 7.36% (coefficient of variation), and the accuracy was between 94.6 and 110% for solutions with concentrations greater than 0.5 ng/mL. The limit of quantification was 0.5 ng/mL in plasma. The assay was applied to therapeutic drug monitoring in samples from three schizophrenic patients.  相似文献   

17.
Electromembrane extraction coupled with high-performance liquid chromatography (HPLC) and ultraviolet (UV) detection was developed for the determination of levamisole in some human biological fluids. Levamisole migrated from 4 mL of different acidized biological matrices, through a thin layer of 2-nitrophenyl octyl ether containing 5% tris-(2-ethylhexyl) phosphate immobilized in the pores of a porous hollow fiber, into a 20-μL acidic aqueous acceptor solution present inside the lumen of the fiber. The parameters influencing electromigration were investigated and optimized. Within 15 min of operation at 200 V, levamisole was extracted from different biological fluid samples with recoveries in the range of 59-65%, which corresponded to preconcentration factors in the range of 118-130. The calibration curves showed linearity in the range of 0.5-10, 0.2-10 and 0.1-10 μg/mL for plasma, urine and saliva, respectively. Limits of detection of 0.1, 0.07 and 0.05 μg/mL and limits of quantification of 0.5, 0.2 and 0.1 μg/mL were obtained for plasma, urine and saliva, respectively. The relative standard deviations of the analysis were found to be in the range of 5.6-9.7% (n = 3). Electromembrane extraction was successfully processed for determination of levamisole in plasma, urine and saliva samples.  相似文献   

18.
In this study, the capability of the prepared polyaniline-coated Fe(3) O(4) nanoparticles for magnetic solid-phase extraction of three parabens from environmental wastewater, cream, and toothpaste samples is presented. Synthesized Fe(3) O(4) nanoparticles were coated with sulfate-doped polyaniline via polymerization of aniline in the presence of Fe(3) O(4) nanoparticles and sulfuric acid. Here, polyaniline-coated Fe(3) O(4) nanoparticles are presented as anion exchange sorbent, which extract anionic form of parabens via anion exchange with dopant of polyaniline. The experimental conditions affecting extraction efficiency were further studied and optimized. The experimental results showed that maximum extraction efficiency can be obtained at 70 mL sample solution of pH 8, extraction and desorption times of 2 and 1 min, respectively, 100 μL of 3% (v/v) acetic acid in acetonitrile as eluent, and 100 mg of the adsorbent. Under these conditions, the linear dynamic ranges were 0.5-100 μg/L with good correlation coefficients (0.998-0.999). The detection limits were in the range of 0.3-0.4 μg/L and the relative standard deviations were less than 2.4 (n = 5) for the three parabens. Finally, this fast and efficient method was further employed for determination of target analytes in cream, toothpaste, and environmental wastewater samples and satisfactory results were obtained.  相似文献   

19.
Vortex‐assisted liquid–liquid microextraction followed by high‐performance liquid chromatography with UV detection was applied to determine Isocarbophos, Parathion‐methyl, Triazophos, Phoxim and Chlorpyrifos‐methyl in water samples. 1‐Bromobutane was used as the extraction solvent, which has a higher density than water and low toxicity. Centrifugation and disperser solvent were not required in this microextraction procedure. The optimum extraction conditions for 15 mL water sample were: pH of the sample solution, 5; volume of the extraction solvent, 80 μL; vortex time, 2 min; salt addition, 0.5 g. Under the optimum conditions, enrichment factors ranging from 196 to 237 and limits of detection below 0.38 μg/L were obtained for the determination of target pesticides in water. Good linearities (r > 0.9992) were obtained within the range of 1–500 μg/L for all the compounds. The relative standard deviations were in the range of 1.62–2.86% and the recoveries of spiked samples ranged from 89.80 to 104.20%. The whole proposed methodology is simple, rapid, sensitive and environmentally friendly for determining traces of organophosphorus pesticides in the water samples.  相似文献   

20.
陈国  孙亚米  杨挺  吴银良 《色谱》2012,30(6):555-559
建立了黄瓜和苹果中氟啶虫酰胺及其3种代谢产物[N-(4-trifluoromethylnicotinoyl)glycine(TFNG)、4-tri-fluoromethylnicotinic acid(TFNA)和4-trifluoromethylnicotinamide(TFNA-AM)]同时测定的液相色谱-串联质谱分析方法。样品用磷酸盐缓冲液提取两次,调节pH值至1.5~2.0后,再用乙酸乙酯提取,液相色谱-串联质谱分析。采用Acquity BEH C18色谱柱分离,0.1%甲酸水-甲醇作为流动相进行梯度洗脱,电喷雾正离子(ESI+)模式电离,多反应监测(MRM)模式检测,外标法定量。氟啶虫酰胺、TFNG、TFNA和TFNA-AM的检出限分别为0.17、0.20、0.35和0.60 μg/kg。在黄瓜和苹果样品中添加5.0~2000 μg/kg水平的氟啶虫酰胺、TFNG、TFNA和TFNA-AM,其平均添加回收率在82.9%~104.1%范围内,批内分析相对标准偏差(RSD)在3.6%~6.9%之间。4种物质的峰面积与其浓度在0.50~200 μg/L范围内均呈良好的线性关系,线性回归系数均大于0.998。前处理步骤仅用有机溶剂6 mL。整个方法具有高灵敏度、准确、稳定的特点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号