首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new algorithm for the delta(v) number, the basic parameter of molecular connectivity indices, is proposed. The new algorithm, which is centered on graph concepts like complete graphs and general graphs, encodes the information of the bonded hydrogen on different atoms through a perturbation parameter that makes use of no new graph concepts. The model quality of the new algorithm is tested with 13 properties of seven different classes of compounds, as well as with composite classes of compounds with the same property and with composite properties of the same class of compounds. Chosen properties and classes of compounds display different percentage of bonded hydrogen atoms, which allow a checking of the importance of this parameter. A comparison is drawn with previous results with zero contribution for the hydrogen perturbation as well as among results obtained by changing the number of compounds of a property but keeping constant the percentage of hydrogen atoms. Results underline the importance of the property as well as the importance of the number of compounds in determining the level of the hydrogen perturbation. Molecular connectivity terms are in some cases more critical than the combination of indices in detecting the perturbation introduced by the hydrogen atoms.  相似文献   

2.
3.
4.
The complete graph conjecture that encodes the inner-core electrons of atoms with principal quantum number n >or= 2 with complete graphs, and especially with odd complete graphs, is discussed. This conjecture is used to derive new values for the molecular connectivity and pseudoconnectivity basis indices of hydrogen-suppressed chemical pseudographs. For atoms with n = 2 the new values derived with this conjecture are coincident with the old ones. The modeling ability of the new homogeneous basis indices, and of the higher-order terms, is tested and compared with previous modeling studies, which are centered on basis indices that are either based on quantum concepts or partially based on this new conjecture for the inner-core electrons. Two similar algorithms have been proposed with this conjecture, and they parallel the two "quantum" algorithms put forward by molecular connectivity for atoms with n > 2. Nine properties of five classes of compounds have been tested: the molecular polarizabilities of a class of organic compounds, the dipole moment, molar refraction, boiling points, ionization energies, and parachor of a series of halomethanes, the lattice enthalpy of metal halides, the rates of hydrogen abstraction of chlorofluorocarbons, and the pED(50) of phenylalkylamines. The two tested algorithms based on the odd complete graph conjecture give rise to a highly interesting model of the nine properties, and three of them can even be modeled by the same set of basis indices. Interesting is the role of some basis indices all along the model.  相似文献   

5.
General and complete graphs have recently been used to free chemical graph theory, and especially molecular connectivity theory, from spurious concepts, which belonged to quantum chemistry with no direct counterpart in graph theory. Both types of graph concepts allow the encoding of multiple bonds, non-bonding electrons, and core electrons. Furthermore, they allow the encoding of the bonded hydrogen atoms, which are normally suppressed in chemical graphs. This suppression could sometimes have nasty consequences, like the impossibility to differentiate between compounds, whose hydrogen-suppressed chemical graphs are completely equivalent, like for the CH2F2 and BHF2 compounds. At the computational level the new graph concepts do not introduce any dramatic changes relatively to previous QSPR/QSAR studies. These concepts can nevertheless help in encoding the many electronic features of a molecule, achieving, as a bonus, an improved quality of the modeled properties, as it is here exemplified with a set of properties of different classes of compounds.  相似文献   

6.
7.
Encoding the core electrons with graph concepts   总被引:2,自引:0,他引:2  
The core electron problem of atoms in chemical graph studies has always been considered as a minor problem. Usually, chemical graphs had to encode just a small set of second row atoms, i.e., C, N, O, and F, thus, graph and, in some cases, pseudograph concepts were enough to "graph" encode the molecules at hand. Molecular connectivity theory, together with its side-branch the electrotopological state, introduced two "ad hoc" algorithms for the core electrons of higher-row atoms based, mainly, on quantum concepts alike. Recently, complete graphs, and, especially, odd complete graphs have been introduced to encode the core electrons of higher-row atoms. By the aid of these types of graphs a double-valued algorithm has been proposed for the valence delta, deltav, of any type of atoms of the periodic table with a principal quantum number n > or =2. The new algorithm is centered on an invariant suggested by the hand-shaking theorem, and the values it gives rise to parallel in some way the values derived by the aid of the two old "quantum" algorithms. A thorough comparative analysis of the newly proposed algorithms has been undertaken for atoms of the group 1A-7A of the periodic table. This comparative study includes the electronegativity, the size of the atoms, the first ionization energy, and the electron affinity. The given algorithm has also been tested with sequential complete graphs, while the even complete graphs give rise to conceptual difficulties. QSAR/QSPR studies do not show a clear-cut preference for any of the two values the algorithm gives rise to, even if recent results seem to prefer one of the two values.  相似文献   

8.
9.
Abstract

The development of molecular complexity measures is reviewed. Two novel sets of indices termed topological complexities are introduced proceeding from the idea that topological complexity increases with the overall connectivity of the molecular graph. The latter is assessed as the connectivity of all connected subgraphs in the molecular graph, including the graph itself. First-order, second-order, third-order, etc., topological complexities i TC are defined as the sum of the vertex degrees in the connected subgraphs with one, two, three, etc., edges, respectively. Zero-order complexity is also specified for the simplest subgraphs–the graph vertices. The overall topological complexity TC is then defined as the sum of the complexities of all orders. These new indices mirror the increase in complexity with the increase in the number of atoms and, at a constant number of atoms, with the increase in molecular branching and cyclicity. Topological complexities compare favorably to molecular connectivities of Kier and Hall, as demonstrated in detail for the classical QSPR test-the boiling points of alkanes. Related to the wide application of molecular connectivities to QSAR studies, a similar importance of the new indices is anticipated.  相似文献   

10.
11.
Novel shape descriptors for molecular graphs.   总被引:2,自引:0,他引:2  
We report on novel graph theoretical indices which are sensitive to the shapes of molecular graphs. In contrast to the Kier's kappa shape indices which were based on a comparison of a molecular graph with graphs representing the extreme shapes, the linear graph and the "star" graph, the new shape indices are obtained by considering for all atoms the number of paths and the number of walks within a graph and then making the quotients of the number of paths and the number of walks the same length. The new shape indices show much higher discrimination among isomers when compared to the kappa shape indices. We report the new shape indices for smaller alkanes and several cyclic structures and illustrate their use in structure-property correlations. The new indices offer regressions of high quality for diverse physicochemical properties of octanes. They also have lead to a novel classification of physicochemical properties of alkanes.  相似文献   

12.
The concept of geometric–arithmetic index was introduced in the chemical graph theory recently, but it has shown to be useful. There are many papers studying different kinds of indices (as Wiener, hyper–Wiener, detour, hyper–detour, Szeged, edge–Szeged, PI, vertex–PI and eccentric connectivity indices) under particular cases of decompositions. The main aim of this paper is to show that the computation of the geometric-arithmetic index of a graph G is essentially reduced to the computation of the geometric-arithmetic indices of the so-called primary subgraphs obtained by a general decomposition of G. Furthermore, using these results, we obtain formulas for the geometric-arithmetic indices of bridge graphs and other classes of graphs, like bouquet of graphs and circle graphs. These results are applied to the computation of the geometric-arithmetic index of Spiro chain of hexagons, polyphenylenes and polyethene.  相似文献   

13.
14.
Five QSPR models of alkanes were reinvestigated. Properties considered were molecular surface-dependent properties (boiling points and gas chromatographic retention indices) and molecular volume-dependent properties (molar volumes and molar refractions). The vertex- and edge-connectivity indices were used as structural parameters. In each studied case we computed connectivity indices of alkane trees and alkane line graphs and searched for the optimum exponent. Models based on indices with an optimum exponent and on the standard value of the exponent were compared. Thus, for each property we generated six QSPR models (four for alkane trees and two for the corresponding line graphs). In all studied cases QSPR models based on connectivity indices with optimum exponents have better statistical characteristics than the models based on connectivity indices with the standard value of the exponent. The comparison between models based on vertex- and edge-connectivity indices gave in two cases (molar volumes and molar refractions) better models based on edge-connectivity indices and in three cases (boiling points for octanes and nonanes and gas chromatographic retention indices) better models based on vertex-connectivity indices. Thus, it appears that the edge-connectivity index is more appropriate to be used in the structure-molecular volume properties modeling and the vertex-connectivity index in the structure-molecular surface properties modeling. The use of line graphs did not improve the predictive power of the connectivity indices. Only in one case (boiling points of nonanes) a better model was obtained with the use of line graphs.  相似文献   

15.
Earlier attempts to assess the complexity of molecules are analyzed and summarized in a number of definitions of general and topological complexity. A concept which specifies topological complexity as overall connectivity, and generalizes the idea of molecular connectivities of Randic, Kier, and Hall, is presented. Two overall connectivity indices, TC and TC1, are defined as the connectivity (the sum of the vertex degrees) of all connected subgraphs in the molecular graph. The contributions to TC and TC1, which originate from all subgraphs having the same number of edges e, form two sets of eth-order overall connectivities, eTC and eTC1. The total number of subgraphs K is also analyzed as a complexity measure, and the vector of its eth-order components, eK, is examined as well. The TC, TC1, and K indices match very well the increase in molecular complexity with the increase in the number of atoms and, at a constant number of atoms, with the increased degree of branching and cyclicity of the molecular skeleton, as well as with the multiplicity of bonds and the presence of heteroatoms. The potential of the three sets of eth-order complexities for applications to QSPR was tested by the modeling of 10 alkane properties (boiling point, critical temperature, critical pressure, critical volume, molar volume, molecular refraction, heat of formation, heat of vaporization, heat of atomization, and surface tension), in parallel with Kier and Hall's molecular connectivity indices (k)chi. The topological complexity indices were shown to outperform molecular connectivity indices in 44 out of the 50 pairs of models compared, including all models with four and five parameters.  相似文献   

16.
17.
GrInvIn (Graph Invariant Investigator) is a software framework for teaching graph theory and for research in graph theory and graph theoretic chemistry. It enables users to construct graphs, compute invariants (e.g. topological indices in chemistry) and investigate relations between these concepts. The design of GrInvIn emphasizes easy usage and makes use of software engineering techniques that enable the user to easily extend the system (e.g. by adding new topological indices to investigate).  相似文献   

18.
Nonredundant and exhaustive generation of stereoisomers of a chemical compound with a specified constitution is one of the important tools for molecular structure elucidation and molecular design. In this paper, we deal with chemical compounds composed of carbon, hydrogen, oxygen and nitrogen atoms whose graphical structures are tree-like graphs because these compounds are most fundamental, and consider stereoisomers that can be generated by asymmetric carbon atoms and double bonds between two adjacent carbon atoms. Based on dynamic programming, we propose an algorithm of generating all stereoisomers without duplication. We treat a given tree-like graph as a tree rooted at its structural center. Our algorithm first computes recursively the numbers of stereoisomers of the subgraphs induced by the descendants of each vertex, and then constructs each stereoisomer by backtracking the process of computing the numbers of stereoisomers. Our algorithm correctly counts the number of stereoisomers in O(n) time and space, and correctly enumerates all the stereoisomers in O(n) space and in O(n) time per stereoisomer, where n is the number of atoms in a given structure. The source code of the program implementing the proposed algorithm is freely available for academic use upon request.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号