首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Monogenic (or hyperholomorphic) functions are well known in general Clifford algebras but have been little studied in the particular case ${\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}}$ R 3 → R 3 . We describe for this case the collection of all Appell systems: bases for the finite-dimensional spaces of monogenic homogeneous polynomials which respect the operator ${D = \partial_{0} - \vec{\partial}}$ D = ? 0 ? ? → . We prove that no purely algebraic recursive formula (in a specific sense) exists for these Appell systems, in contrast to the existence of known constructions for ${\mathbb{R}^{3} \rightarrow \mathbb{R}^{4}}$ R 3 → R 4 and ${\mathbb{R}^{4} \rightarrow \mathbb{R}^{4}}$ R 4 → R 4 . However, we give a simple recursive procedure for constructing Appell bases for ${\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}}$ R 3 → R 3 which uses the operation of integration of polynomials.  相似文献   

2.
We consider the operator $\mathcal {R}$ , which sends a function on ${\mathbb {R}}^{2n}$ to its integrals over all affine Lagrangian subspaces in ${\mathbb {R}}^{2n}$ . We discuss properties of the operator $\mathcal {R}$ and of the representation of the affine symplectic group in several function spaces on ${\mathbb {R}}^{2n}$ .  相似文献   

3.
We consider non-autonomous functionals ${\mathcal{F}(u; \Omega)=\int_{\Omega}f(x, Du)\ dx}$ , where the density ${f:\Omega\times\mathbb{R}^{nN}\rightarrow\mathbb{R}}$ has almost linear growth, i.e., $$f(x,\xi)\approx |\xi|\log(1+|\xi|).$$ We prove partial C 1,?? -regularity for minimizers ${u:\mathbb{R}^n\supset\Omega\rightarrow \mathbb{R}^N}$ under the assumption that D ?? f (x, ??) is H?lder continuous with respect to the x-variable. If the x-dependence is C 1 we can improve this to full regularity provided additional structure conditions are satisfied.  相似文献   

4.
This paper is concerned with the multiplicity and concentration of positive solutions for the nonlinear Schr?dinger?CPoisson equations $$ \left\{ \begin{array}{l@{\quad}l} -\varepsilon^2\triangle u+V(x)u+\phi(x) u=f(u)& {\rm in}\,{\mathbb R}^3, \\ -\varepsilon^2\triangle \phi=u^2 & {\rm in}\,{\mathbb R}^3, \\ u\in H^1({\mathbb R}^3), u(x) > 0,& \forall x\in{\mathbb R}^3, \\ \end{array} \right. $$ where ???>?0 is a parameter, ${V: {\mathbb R}^3\rightarrow{\mathbb R}}$ is a continuous function and ${f: {\mathbb R}\rightarrow {\mathbb R}}$ is a C 1 function having subcritical growth. The proof of the main result is based on minimax theorems and the Ljusternik?CSchnirelmann theory.  相似文献   

5.
Let α > 0. We consider the linear span $\mathfrak{X}_\alpha \left( {\mathbb{R}^n } \right)$ of scalar Riesz's kernels $\left\{ {\tfrac{1}{{\left| {x - a} \right|^\alpha }}} \right\}_{a \in \mathbb{R}^n }$ and the linear span $\mathfrak{Y}_\alpha \left( {\mathbb{R}^n } \right)$ of vector Riesz's kernels $\left\{ {\tfrac{1}{{\left| {x - a} \right|^{\alpha + 1} }}\left( {x - a} \right)} \right\}_{a \in \mathbb{R}^n }$ . We study the following problems. (1) When is the intersection $\mathfrak{X}_\alpha \left( {\mathbb{R}^n } \right) \cap L^p \left( {\mathbb{R}^n } \right)$ dense in Lp(?n)? (2) When is the intersection $\mathfrak{Y}_\alpha \left( {\mathbb{R}^n } \right) \cap L^p \left( {\mathbb{R}^n ,\mathbb{R}^n } \right)$ dense in Lp(?n, ?n)? Bibliography: 15 titles.  相似文献   

6.
For integral functionals initially defined for ${u \in {\rm W}^{1,1}(\Omega; \mathbb{R}^m)}$ by $$\int_{\Omega} f(\nabla u) \, {\rm d}x$$ we establish strict continuity and relaxation results in ${{\rm BV}(\Omega; \mathbb{R}^m)}$ . The results cover the case of signed continuous integrands ${f : \mathbb{R}^{m \times d} \to \mathbb{R}}$ of linear growth at infinity. In particular, it is not excluded that the integrands are unbounded below.  相似文献   

7.
8.
This article is devoted to the Hamilton–Jacobi partial differential equation $$\left\{\begin{array}{lll}\frac{\partial V}{\partial t} = H\left(t, x, - \frac{\partial V}{\partial x}\right) & \hbox{on} & [0, 1]\times {\overline{\Omega}}\\V(1, x) = g(x) & \hbox{on}& {\overline{\Omega}},\end{array}\right.$$ where the Hamiltonian ${{H:[0, 1] \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}}}$ is convex and positively homogeneous with respect to the last variable, ${{\Omega \subset \mathbb{R}^n}}$ is open and ${{g : \mathbb{R}^n \to \mathbb{R} \cup \{+ \infty\}}}$ is lower semicontinuous. Such Hamiltonians do arise in the optimal control theory. We apply the method of generalized characteristics to show uniqueness of lower semicontinuous solution of this first order PDE. The novelty of our setting lies in the fact that we do not ask regularity of the boundary of Ω and extend the Soner inward pointing condition in a nontraditional way to get uniqueness in the class of lower semicontinuous functions.  相似文献   

9.
We classify hypersurfaces of rank two of Euclidean space ${\mathbb{R}^{n+1}}$ that admit genuine isometric deformations in ${\mathbb{R}^{n+2}}$ . That an isometric immersion ${\hat{f}\colon M^n \to \mathbb{R}^{n+2}}$ is a genuine isometric deformation of a hypersurface ${f\colon M^n\to\mathbb{R}^{n+1}}$ means that ${\hat f}$ is nowhere a composition ${\hat f=\hat F\circ f}$ , where ${\hat{F} \colon V\subset \mathbb{R}^{n+1} \to\mathbb{R}^{n+2}}$ is an isometric immersion of an open subset V containing the hypersurface.  相似文献   

10.
Let \(A = -\mathrm{div} \,a(\cdot ) \nabla \) be a second order divergence form elliptic operator on \({\mathbb R}^n\) with bounded measurable real-valued coefficients and let \(W\) be a cylindrical Brownian motion in a Hilbert space \(H\) . Our main result implies that the stochastic convolution process $$\begin{aligned} u(t) = \int _0^t e^{-(t-s)A}g(s)\,dW(s), \quad t\geqslant 0, \end{aligned}$$ satisfies, for all \(1\leqslant p<\infty \) , a conical maximal \(L^p\) -regularity estimate $$\begin{aligned} {\mathbb E}\Vert \nabla u \Vert _{ T_2^{p,2}({\mathbb R}_+\times {\mathbb R}^n)}^p \leqslant C_p^p {\mathbb E}\Vert g \Vert _{ T_2^{p,2}({\mathbb R}_+\times {\mathbb R}^n;H)}^p. \end{aligned}$$ Here, \(T_2^{p,2}({\mathbb R}_+\times {\mathbb R}^n)\) and \(T_2^{p,2}({\mathbb R}_+\times {\mathbb R}^n;H)\) are the parabolic tent spaces of real-valued and \(H\) -valued functions, respectively. This contrasts with Krylov’s maximal \(L^p\) -regularity estimate $$\begin{aligned} {\mathbb E}\Vert \nabla u \Vert _{L^p({\mathbb R}_+;L^2({\mathbb R}^n;{\mathbb R}^n))}^p \leqslant C^p {\mathbb E}\Vert g \Vert _{L^p({\mathbb R}_+;L^2({\mathbb R}^n;H))}^p \end{aligned}$$ which is known to hold only for \(2\leqslant p<\infty \) , even when \(A = -\Delta \) and \(H = {\mathbb R}\) . The proof is based on an \(L^2\) -estimate and extrapolation arguments which use the fact that \(A\) satisfies suitable off-diagonal bounds. Our results are applied to obtain conical stochastic maximal \(L^p\) -regularity for a class of nonlinear SPDEs with rough initial data.  相似文献   

11.
Let ${\Omega \subset \mathbb{R}^{N}}$ be a Lipschitz domain and Γ be a relatively open and non-empty subset of its boundary ${\partial\Omega}$ . We show that the solution to the linear first-order system $$\nabla \zeta = G\zeta, \, \, \zeta|_\Gamma = 0 \quad \quad \quad (1)$$ is unique if ${G \in \textsf{L}^{1}(\Omega; \mathbb{R}^{(N \times N) \times N})}$ and ${\zeta \in \textsf{W}^{1,1}(\Omega; \mathbb{R}^{N})}$ . As a consequence, we prove $$||| \cdot ||| : \textsf{C}_{o}^{\infty}(\Omega, \Gamma; \mathbb{R}^{3}) \rightarrow [0, \infty), \, \, u \mapsto \parallel {\rm sym}(\nabla uP^{-1})\parallel_{\textsf{L}^{2}(\Omega)}$$ to be a norm for ${P \in \textsf{L}^{\infty}(\Omega; \mathbb{R}^{3 \times 3})}$ with Curl ${P \in \textsf{L}^{p}(\Omega; \mathbb{R}^{3 \times 3})}$ , Curl ${P^{-1} \in \textsf{L}^{q}(\Omega; \mathbb{R}^{3 \times 3})}$ for some p, q > 1 with 1/p + 1/q = 1 as well as det ${P \geq c^+ > 0}$ . We also give a new and different proof for the so-called ‘infinitesimal rigid displacement lemma’ in curvilinear coordinates: Let ${\Phi \in \textsf{H}^{1}(\Omega; \mathbb{R}^{3})}$ satisfy sym ${(\nabla\Phi^\top\nabla\Psi) = 0}$ for some ${\Psi \in \textsf{W}^{1,\infty}(\Omega; \mathbb{R}^{3}) \cap \textsf{H}^{2}(\Omega; \mathbb{R}^{3})}$ with det ${\nabla\Psi \geq c^+ > 0}$ . Then, there exist a constant translation vector ${a \in \mathbb{R}^{3}}$ and a constant skew-symmetric matrix ${A \in \mathfrak{so}(3)}$ , such that ${\Phi = A\Psi + a}$ .  相似文献   

12.
Let KL 1(?) and let fL (?) be two functions on ?. The convolution $$ \left( {K*F} \right)\left( x \right) = \int_\mathbb{R} {K\left( {x - y} \right)f\left( y \right)dy} $$ can be considered as an average of f with weight defined by K. Wiener’s Tauberian theorem says that under suitable conditions, if $$ \mathop {\lim }\limits_{x \to \infty } \left( {K*F} \right)\left( x \right) = \mathop {\lim }\limits_{x \to \infty } \int_\mathbb{R} {\left( {K*A} \right)\left( x \right)} $$ for some constant A, then $$ \mathop {\lim }\limits_{x \to \infty } f\left( x \right) = A $$ We prove the following ?-adic analogue of this theorem: Suppose K, F, G are perverse ?-adic sheaves on the affine line $ \mathbb{A} $ over an algebraically closed field of characteristic p (p ≠ ?). Under suitable conditions, if $ \left( {K*F} \right)|_{\eta _\infty } \cong \left( {K*G} \right)|_{\eta _\infty } $ , then $ F|_{\eta _\infty } \cong G|_{\eta _\infty } $ , where η is the spectrum of the local field of $ \mathbb{A} $ at .  相似文献   

13.
In this note we prove the following: Let n?≥ 2 be a fixed integer. A system of additive functions ${A_{1},A_{2},\ldots,A_{n}:\mathbb{R} \to\mathbb{R}}$ is linearly dependent (as elements of the ${\mathbb{R}}$ vector space ${\mathbb{R}^{\mathbb{R}}}$ ), if and only if, there exists an indefinite quadratic form ${Q:\mathbb{R}^{n}\to\mathbb{R} }$ such that ${Q(A_{1}(x),A_{2}(x),\ldots,A_{n}(x))\geq 0}$ or ${Q(A_{1}(x),A_{2}(x),\ldots,A_{n}(x))\leq 0}$ holds for all ${x\in\mathbb{R}}$ .  相似文献   

14.
We discuss some basic regularity properties of the area-preserving deformations ${u:\Omega \mapsto \mathbb{R}^2}$ that have minimal elastic energy ${\int \limits_\Omega|\nabla u|^2}$ among a suitable class of admissible vectorfields defined on a smooth, bounded domain ${\Omega\subset \mathbb{R}^2}$ . Although we restrict ourselves to the quadratic stored energy function and 2-space, most of our results extend to three dimensional setting with convex stored energy function.  相似文献   

15.
Introduce the notation: $\mathbb{Z}$ is the set of integers, $\bar {\mathbb{Z}}={\mathbb{Z}} \cup \{-\infty, +\infty\},{\mathbb{R}}_+^2 =\{x=(x_1,x_2) \in {\mathbb{R}}^2; x_1>0,x_2>0\}$ , $g_{k,m} (x,\alpha,h)= \int\limits_0^1 {g_1 (\frac{(k+u)h_1 - x_1}{\alpha_1})g_2(\frac{(m+u)h_2 - x_2}{\alpha_2})}du$ , where $g_i :\mathbb{R} \to \mathbb{R},x \in \mathbb{R}^2 ,\alpha ,h \in \mathbb{R}_ + ^2 $ . Under certain conditions on the functions g 1, g 2, we prove that the system of functions $g_{k,m} (x,\alpha^(n), h^(n)) (k,m \in \bar {\mathbb{Z}})$ , where $\alpha ^{\left( n \right)} ,h^{\left( n \right)} \in \mathbb{R}_ + ^2 $ are arbitrary infinitesimal sequences, is complete in the space C $\mathbb{R}^2 $ of uniformly continuous bounded functions f equipped with the norm $||f|| = \mathop {\sup }\limits_{x \in \mathbb{R}^2 } |f(x)|$ . Starting with the functions g k,m , it is possible to construct a method for uniform approximating in $\mathbb{R}^2 $ any continuous function of bounded variation in the sense of Hardy. An error estimate is derived in terms of the second order moduli of continuity. Based on the obtained results, we discuss in detail the accuracy of uniform approximation of functions of several variables by linear functions. The error estimates are derived by using second order moduli of continuity. We pay a particular attention to sharpness of constants. Bibliography: 8 titles.  相似文献   

16.
We study the following nonlinear elliptic system of Lane–Emden type $$\left\{\begin{array}{ll} -\Delta u = {\rm sgn}(v) |v| ^{p-1} \qquad \qquad \qquad \; {\rm in} \; \Omega , \\ -\Delta v = - \lambda {\rm sgn} (u)|u| \frac{1}{p-1} + f(x, u)\; \; {\rm in}\; \Omega , \\ u = v = 0 \qquad \qquad \qquad \quad \quad \;\;\;\;\; {\rm on}\; \partial \Omega , \end{array}\right.$$ where ${\lambda \in \mathbb{R}}$ . If ${\lambda \geq 0}$ and ${\Omega}$ is an unbounded cylinder, i.e., ${\Omega = \tilde \Omega \times \mathbb{R}^{N-m} \subset \mathbb{R}^{N}}$ , ${N - m \geq 2, m \geq 1}$ , existence and multiplicity results are proved by means of the Principle of Symmetric Criticality and some compact imbeddings in partially spherically symmetric spaces. We are able to state existence and multiplicity results also if ${\lambda \in \mathbb{R}}$ and ${\Omega}$ is a bounded domain in ${\mathbb{R}^{N}, N \geq 3}$ . In particular, a good finite dimensional decomposition of the Banach space in which we work is given.  相似文献   

17.
We provide an example of a discontinuous involutory additive function ${a: \mathbb{R}\to \mathbb{R}}$ such that ${a(H) \setminus H \ne \emptyset}$ for every Hamel basis ${H \subset \mathbb{R}}$ and show that, in fact, the set of all such functions is dense in the topological vector space of all additive functions from ${\mathbb{R}}$ to ${\mathbb{R}}$ with the Tychonoff topology induced by ${\mathbb{R}^{\mathbb{R}}}$ .  相似文献   

18.
19.
We consider the Markov chain ${\{X_n^x\}_{n=0}^\infty}$ on ${\mathbb{R}^d}$ defined by the stochastic recursion ${X_{n}^{x}= \psi_{\theta_{n}} (X_{n-1}^{x})}$ , starting at ${x\in\mathbb{R}^d}$ , where ?? 1, ?? 2, . . . are i.i.d. random variables taking their values in a metric space ${(\Theta, \mathfrak{r})}$ , and ${\psi_{\theta_{n}} :\mathbb{R}^d\mapsto\mathbb{R}^d}$ are Lipschitz maps. Assume that the Markov chain has a unique stationary measure ??. Under appropriate assumptions on ${\psi_{\theta_n}}$ , we will show that the measure ?? has a heavy tail with the exponent ???>?0 i.e. ${\nu(\{x\in\mathbb{R}^d: |x| > t\})\asymp t^{-\alpha}}$ . Using this result we show that properly normalized Birkhoff sums ${S_n^x=\sum_{k=1}^n X_k^x}$ , converge in law to an ??-stable law for ${\alpha\in(0, 2]}$ .  相似文献   

20.
Under the Keller?COsserman condition on ${\Sigma_{j=1}^{2}f_{j}}$ , we show the existence of entire positive solutions for the semilinear elliptic system ${\Delta u_{1}+|\nabla u_{1}|=p_{1}(x)f_{1}(u_{1},u_{2}), \Delta u_{2}+|\nabla u_{2}|=p_{2}(x)f_{2}(u_{1},u_{2}),x \in \mathbb{R}^{N}}$ , where ${p_{j}(j=1, 2):\mathbb{R}^{N} \rightarrow [0,\infty)}$ are continuous functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号