首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of surface functionality and relative humidity (RH) on nanomechanical contact stiffness were investigated using atomic force acoustic microscopy (AFAM), a contact scanned-probe microscopy (SPM) technique. Self-assembled monolayers (SAMs) with controlled surface energy were studied systematically in a controlled-humidity chamber. AFAM amplitude images of a micropatterned, graded-surface-energy SAM sample revealed that image contrast depended on both ambient humidity and surface energy. Quantitative AFAM point measurements indicated that the contact stiffness remained roughly constant for the hydrophobic SAM but increased monotonically for the hydrophilic SAM. To correct for this unphysical behavior, a viscoelastic damping term representing capillary forces between the tip and the SAM was added to the data analysis model. The contact stiffness calculated with this revised model remained constant with RH, while the damping term increased strongly with RH for the hydrophilic SAM. The observed behavior is consistent with previous studies of surface energy and RH behavior using AFM pull-off forces. Our results show that surface and environmental conditions can influence accurate measurements of nanomechanical properties with SPM methods such as AFAM.  相似文献   

2.
The surfaces of three commercial urea formaldehyde polysulfone membranes from Dow DenmarkTM (GR51, GR61 and GR81) are characterised both topographically and chemically. Their topography is studied by scanning force microscopy to obtain the corresponding pore-size distributions, which are in fair agreement with nominal molecular weight cut-offs. The composition of the surfaces of the membranes is analysed by X-ray photoelectron spectroscopy. The resulting percentage content of nitrogen, which could be attributed probably to an additive used in the manufacturing process, is shown to correlate with the portion of the total surface with different viscoelastic properties as investigated by using phase-contrast scanning force microscopy. Both parameters are increasing for membranes with decreasing molecular weight cut-off. Also, the additive seems to be more sparsely distributed for the membranes with bigger pores, according to fractal analysis. Finally, all the membranes are very similarly wettable. Received: 22 May 2001 / Accepted: 30 May 2001 / Published online: 25 July 2001  相似文献   

3.
The effects of adhesion hysteresis in the dynamic‐dissipation curves measured in amplitude‐modulation atomic force microscopy are discussed. Hysteresis in the interaction forces is shown to modify the dynamics of the cantilever leading to different power dissipation curves in the repulsive and attractive regimes. Experimental results together with numerical simulations show that power dissipation, as measured in force microscopy, is not always proportional to the energy dissipated in the tip–sample interaction process. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Second-harmonic generation (SHG)-based nonlinear optical microscopy is used for spatially resolved imaging of the polarization switching in lead zirconium titanate ferroelectric thin films. The local SHG hysteresis loops reveal a strong dependence on film composition and structure. The SHG microscopy results are in good agreement with the efficiency of electrostatic force microscopy writing and allow us to predict the microscopic dielectric memory efficiency, both in contact and contact-less ways. Received: 15 January 2001 / Revised version: 27 March 2002 / Published online: 6 June 2002  相似文献   

5.
Three mechanisms for spatially resolved growth and removal of oxide on silicon substrates have been investigated. Thermally grown oxide layers with thicknesses in the range 2–6 nm were the distinctive feature of the system. The layers were characterized and manipulated by methodologies based on atomic force microscopy (AFM) with conducting probes in a vacuum environment of 10-2–10-3 Pa. The probe is then effectively a travelling electrode that generates an electrostatic field between the tip and the substrate. Oxide growth was induced for a positive sample bias greater than 5 V, but below the level corresponding to dielectric breakdown. Application of a short pulse of amplitude marginally above that corresponding to dielectric breakdown, on the other hand, had the effect of producing pits of inner diameter of about 10 nm in the pre-existing oxide layer at the point of tip-to-oxide contact. Application of a low positive sample bias (less than that required for measurable oxide growth) in combination with high linear scan speed had the effect of removing a pre-existing oxide layer from the scanned field of view. The most plausible mechanisms are based on transverse ionic diffusion (for oxide growth), controlled dielectric breakdown (for formation of pits) and lateral transport of silicaceous species (for oxide removal). Received: 24 October 2001 / Accepted: 6 January 2002 / Published online: 3 June 2002 RID="*" ID="*"Corresponding author. Fax: +617-3875-7656, E-mail: s.myhra@sct.gu.edu.au  相似文献   

6.
Atomic force microscopy (AFM) has been used to investigate the phase transitions and surface morphology transformation of cadmium mercury thiocyanate (CMTC) crystals, which are highly efficient nonlinear optical (NLO) materials for generating blue-violet light by laser frequency doubling. Amorphous aggregates at the crystalline steps become greatly contracted and much more crystalloid after the crystal was kept for one day. Elimination of dangling bonds, which lower the surface free energy at the crystal surface, and structural adjustment inside the crystal are assumed to cause this phase transition. Surface morphology transformations were also observed in CMTC crystals during and after multiple scanning by AFM tips. We have visualized the continuous translation process from two-dimensional nuclei to trigonal microcrystals with almost equal sizes during multiple scanning. In other cases, however, the surface morphology did not change at all during scanning, but became greatly altered hours after scanning. These experimental results suggest that reconstruction is a characteristic growth phenomenon on CMTC crystal surfaces. Reconstruction probably results from the formation of intervening metastable phases that have the potential to arrive at more stable stages; however, multiple scanning of AFM tips greatly affects this translation process. Received: 28 August 2001 / Accepted: 7 November 2001 / Published online: 29 May 2002  相似文献   

7.
We present the design of a new scanning force microscope specially suited for the investigation of soft matter, particularly biological, in an ultrahigh vacuum. The key point is that the samples are immobilized by shock freezing in order to maintain their native structure before they are introduced into the vacuum system. The vacuum system itself consists of a transfer chamber, which allows an exchange of the cold sample with cryo-electron microscopes, a preparation chamber including a stage for in-situ freeze drying, freeze etching, or freeze fracturing, and the analysis chamber with the microscope. Sample cooling is maintained in all chambers. The microscope is mounted on a commercially available vibration isolation system; a flow cryostat cools the sample to the temperature of liquid nitrogen, while the tip is scanned. Besides measurements on test samples, which demonstrate the imaging capabilities of the instrument, first results on T4-bacteriophages (viruses) are shown. Received: 2 September 2002 / Accepted: 2 September 2002 / Published online: 5 March 2003 RID="*" ID="*"Corresponding author. Fax: +49-40/42838-6188, E-mail: wiesendanger@physnet.uni-hamburg.de  相似文献   

8.
Presented in this study are the Berkovich nanoindentation-induced mechanical deformation mechanisms of metal-organic chemical-vapor deposition (MOCVD) derived GaN thin films, investigated by using the cathodoluminescence (CL) and the cross-sectional transmission electron microscopy (XTEM) techniques. The multiple “pop-in” events were observed in the load-displacement (P-h) curves and appeared to occur randomly with increasing the indentation load. These instabilities are attributed to the dislocation nucleation and propagation. CL images of nanoindentation show a very well-defined rosette structures with the hexagonal system, and clearly display the distribution of deformation-induced extended defects/dislocations which affect CL emission. By using focused ion beam (FIB) milling to accurately position the cross-section of an indented area, XTEM results demonstrate that the major plastic deformation is taking place through the propagation of dislocations. The present observations are in support to the massive dislocations activities occurring underneath the indenter during the loading cycle. No evidence of either phase transformation or formation of micro-cracking was observed by using XTEM observations. We also discuss how these features correlate with Berkovich nanoindentation-induced defects/dislocations microstructures. Finally, this study has significant implications for the extent of contact-induced damage during fabrication of GaN-based optoelectronic devices.  相似文献   

9.
Incorporating self-assembled Ge islands on Si surfaces into electronic devices has been suggested as a means of forming small features without fine-scale litho- graphy. For use in electronic devices, the electrical properties of the deposited Ge and their relation to the underlying Si substrate must be known. This report presents the results of a surface photovoltage investigation of the surface energy barrier as increasing amounts of Ge are added to a Si surface by chemical vapor deposition. The results are interpreted in terms of band discontinuities and surface states. The surface barrier increases as a wetting layer is deposited and continues to increase as defect-free islands form. It saturates as the islands grow. As the amount of Ge continues increasing, defects form, and the surface barrier decreases because of the resulting allowed states at the Ge/Si interface. Qualitatively similar behavior is found for Si(001) and Si(111). Covering the Ge with Si reduces the surface-state density and possibly modifies the wetting layer, decreasing the barrier to one more characteristic of Si. Initial hydrogen termination of the surface decreases the active surface-state density. As the H desorbs, the surface barrier increases until it stabilizes as the surface oxidizes. The behavior is briefly correlated with scanning-tunneling spectroscopy data. Received: 13 November 2000 / Accepted: 14 November 2000 / Published online: 23 May 2001  相似文献   

10.
Application of scanning force microscopy in nanotube science   总被引:2,自引:0,他引:2  
Recent developments in the application of scanning force microscopy in nanotube science are reviewed. The non-destructive character of this technique allows the structural characterisation of (chemically modified) single- and multi-wall nanotubes deposited on substrates for further investigations such as electrical transport measurements. Furthermore, SFM is now an established tool for manipulation of nanotubes, which allows position control and determination of elastic constants such as the Young’s modulus. Finally it is shown that very sharp and stable probes for scanning force microscopy can be made from nanotubes due to their excellent stability and aspect ratio. Received: 17 May 1999 / Accepted: 18 May 1999 / Published online: 29 July 1999  相似文献   

11.
Gold films with a nominal thickness of 5–40 monolayers were grown on dielectric substrates and imaged by scanning force microscopy (SFM). The films originally consisted of well-separated or densely packed clusters. During imaging in contact mode, the morphology of the films changed drastically. At low coverage, i.e. Θ<10 monolayers, the well-known stripes originating from mobile clusters, eventually accumulated into larger aggregates, were observed. In contrast, at larger coverage, highly ordered structures consisting of one-dimensional wires evolved during scanning. They often were parallel with equal separation, i.e. well-defined periodicity, over distances of several μm. Typically, the wires were 5–10 nm high and 50–100 nm wide. Investigations of Au films prepared at varying temperature on different dielectric substrates allow us to suggest a self-assembling mechanism for wire formation in which gold is periodically collected by the SFM tip and redeposited as soon as a critical amount is reached. Received: 22 February 1999 / Accepted: 2 March 1999 / Published online: 7 April 1999  相似文献   

12.
In this paper, we describe a statistical method of quantification of the number of functional groups at the contact area of a probe tip for atomic force microscopy from the result of repetitive pull-off force measurements. We have investigated laboratory-made carbon nanotube (CNT) probe tips to apply them for chemical force microscopy because limited number of functional groups at the tip-end is expected. Using a CNT tip, we conducted repetitive pull-off force measurements against a self-assembled monolayer terminated with carboxyl group and analyzed them in terms of the number of hydrogen bond groups at the CNT tip. The elementary hydrogen bond rupture force quantum in n-decane medium was estimated to be 84.2 ± 0.5 pN in the present system. Thus it was revealed that only a couple of hydrogen bond groups of the CNT tip were participating in hydrogen bonding with the sample on an average in this experimental system.  相似文献   

13.
The thermal properties of carbon nanotubes are directly related to their unique structure and small size. Because of these properties, nanotubes may prove to be an ideal material for the study of low-dimensional phonon physics, and for thermal management, both on the macro- and the micro-scale. We have begun to explore the thermal properties of nanotubes by measuring the specific heat and thermal conductivity of bulk SWNT samples. In addition, we have synthesized nanotube-based composite materials and measured their thermal conductivity. The measured specific heat of single-walled nanotubes differs from that of both 2D graphene and 3D graphite, especially at low temperatures, where 1D quantization of the phonon bandstructure is observed. The measured specific heat shows only weak effects of intertube coupling in nanotube bundling, suggesting that this coupling is weaker than expected. The thermal conductivity of nanotubes is large, even in bulk samples: aligned bundles of SWNTs show a thermal conductivity of >200 W/m K at room temperature. A linear K(T) up to approximately 40 K may be due to 1D quantization; measurement of K(T) of samples with different average nanotube diameters supports this interpretation. Nanotube–epoxy blends show significantly enhanced thermal conductivity, showing that nanotube-based composites may be useful not only for their potentially high strength, but also for their potentially high thermal conductivity. Received: 17 October 2001 / Accepted: 3 December 2001 / Published online: 4 March 2002  相似文献   

14.
Asymmetric PS-b-PEO block copolymer exhibits well-ordered cylindrical morphology with nanoscale domain sizes due to microphase separation. Since the PS and PEO blocks have large stiffness difference, this polymer system represents an ideal candidate for studies of the phase contrast behavior in atomic force microscopy (AFM). In this paper, PS-b-PEO films are investigated under different scanning conditions using two different atomic force microscopes. It is found that the phase contrast of the film can be well described in terms of energy dissipation, though the exact phase image may also depend on the scanning parameters (e.g., the repulsive versus attractive regimes) as well as the settings of the microscope. Height variation on sample surface does not have significant effect on phase contrast. However, in order to obtain true topography of the polymer film, care has to be taken to avoid damage to the sample by AFM. Under certain conditions, true topography can be obtained during the first scan in spite of the surface-damaging forces are used.  相似文献   

15.
The effect of the surface characteristics of Ni catalyst films on the growth behavior of multi-walled carbon nanotubes (MWCNTs) were investigated using Ni catalyst films prepared by different physical vapor deposition methods, electron-beam evaporation and sputtering. The growth behavior of MWCNTs was dependent upon the surface roughness of the Ni films. After a pretreatment process with NH3, the root mean squares of surface roughness of e-beam evaporated and sputtered Ni catalyst films increased to 16.6 and 3.2 nm, respectively. Curled-MWCNTs and carbon-encapsulated Ni nanoparticles were formed on the Ni film deposited by e-beam evaporation while vertically aligned-MWCNTs were grown on the sputter-deposited film. In addition, the surface roughness of the Ni films affected the field emission properties of the MWCNTs. This was considered to originate from the specific growth behavior of the MWCNTs which was primarily caused by the initial surface roughness of the Ni films.  相似文献   

16.
Surfaces of several AIIIBV compound semiconductors (InSb, GaAs, InP, InAs) of the (0 0 1) orientation have been studied with noncontact atomic force microscopy (NC-AFM). Obtained atomically resolved patterns have been compared with structural models available in the literature. It is shown that NC-AFM is an efficient tool for imaging complex surface structures in real space. It is also demonstrated that the recent structural models of III-V compound surfaces provide a sound base for interpretation of majority of features present in recorded patterns. However, there are also many new findings revealed by the NC-AFM method that is still new experimental technique in the context of surface structure determination.  相似文献   

17.
Silver selenide thin films were grown on silicon substrates by the solid-state reaction of sequentially deposited Se and Ag films of suitable thickness. Transmission electron microscopy and particle-induced X-ray emission studies of the as-deposited films showed the formation of single phase polycrystalline silver selenide from the reaction of Ag and Se films. Atomic force microscopy images of the as-deposited and films annealed at different temperatures in argon showed the film morphology to evolve into an agglomerated state with annealing temperature. The results indicate that when annealed above 473 K, silver selenide films on silicon become unstable and agglomerate through holes generated at grain boundaries.  相似文献   

18.
Layers of dihydroxy silicon phthalocyanine tetrasulfonic acid and oligo-μ-oxo silicon phthalocyanine tetrasulfonic acid were prepared by solution-casting methods. The purity of the material was checked by X-ray photoemission spectroscopy. The orientation of the molecules in respect to the substrate plane was investigated by angle-dependent near-edge X-ray absorption fine-structure spectroscopy. The morphology was characterized by atomic force microscopy. Most samples exhibited a significant orientation that was accompanied by crystalline structures; others had no orientation at all with a dominant amorphous morphology. This behavior indicates that several preparation parameters affect the crystallinity and the orientation of the phthalocyanines. Received: 16 January 2002 / Accepted: 11 February 2002 / Published online: 3 May 2002 RID="*" ID="*"Corresponding author. Fax: +1-919/515-7331, E-mail: harald_ade@ncsu.edu RID="**" ID="**"Present address: Southern Illinois University, Physics, Mailcode 4401, Carbondale, IL 62901, USA  相似文献   

19.
We have investigated the synthesis of nanostructures, as well as the control of their size and location by means of ion beams. The phase separation and interface kinetics under ion irradiation give new possibilities for controlling the growth of nanostructures. Additionally, the chemical decomposition of the host matrix by collisional mixing can contribute to the self-organization of nanostructures, especially at interfaces. It is shown how collisional mixing during ion implantation affects nanocrystal (NC) synthesis and how ion irradiation through NCs modifies their size and size distribution. An analytical expression for solute concentration around an ion-irradiated NC was found, which may be written like the well-known Gibbs–Thomson relation. However, parameters have modified meanings, which has a significant impact on the evolution of NC ensembles. “Inverse Ostwald ripening” of NCs, resulting in an unimodal NC size distribution, is predicted, which has been confirmed experimentally for Au NCs in SiO2 and by kinetic lattice Monte Carlo simulations. At interfaces, the same ion-irradiation-induced mechanism may result in self-organization of NCs into a thin δ-layer. Collisional decomposition of SiO2 may enhance the NC δ-layer formation in SiO2 at the Si/SiO2 interface. The distance of the self-organized NC δ-layer from the SiO2/Si interface renders the structure interesting for non-volatile memory applications. Received: 11 November 2002 / Accepted: 12 November 2002 / Published online: 4 April 2003 RID="*" ID="*"Corresponding author. Fax: +49-351-260-3285, E-mail: K.-H.Heinig@fz-rossendorf.de  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号