首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The influence of carrier gas pressure on the retention factor k′ of light hydrocarbons C1–C4 in a monolithic capillary column based on divinylbenzene was studied. It was shown that, for monolithic columns and nonideal carrier gases, the pressure dependence of lnk′ was nonlinear over a wide pressure range and could be described by the classic Everett equation. It was concluded that the competitive adsorption model failed to describe the experimental data correctly, especially for strongly retained sorbates and/or heavy carrier gases. Original Russian Text ? A.A. Korolev, V.E. Shiryaeva, T.P. Popova, A.V. Kozin, A.A. Kurganov, 2009, published in Zhurnal Fizicheskoi Khimii, 2009, Vol. 83, No. 4, pp. 776–783.  相似文献   

2.
In capillary gas-solid chromatography where interactions between solute and carrier gas and adsorption of the solute on the surface of the adsorbent are considered to be imperfect, it has been shown that chromatographic retention is determined largely by adsorption processes. It has been established that correlation relationships k(P2)=A k(P1) + B, where k is the retention factor, and A and B are equation constants, was valid for use of different carrier gases P1 and P2. Column efficiency could be improved by use of carbon dioxide. The advantages of using carbon dioxide as the carrier gas were investigated.  相似文献   

3.
The dependence of retention factork i , relative retention time α i , and retention indexI i of organic compounds on the average pressure (p av) of the carrier gas (helium) was studied experimentally using a long narrow-bore capillary column with the SE-30 nonpolar phase at 120°C. The linear dependencesk i =f(p av), α i =φ(p av), andI i =φ(p av) obtained previously were found to be in good agreement with experimental data. Invariant relative retention valuesk 0,i , α 0,i , andI 0,i , which do not depend on the helium pressure, were determined for some organic compounds of various chemical classes. The dependence of the relative retention on the carrier gas pressure needs to be taken into account in precision measurements and in experiments with narrow-bore capillary columns. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 314–316, February, 1998.  相似文献   

4.
The effects of the carrier gas nature and pressure on the relative retention values of organic compounds were studied using a series of capillary columns differing in the film thickness of the polar stationary phase (PEG-20M). Relative retention depends linearly on the carrier gas pressure. This dependence becomes more pronounced in the following order of carrier gases: helium < nitrogen < carbon dioxide. The limiting relative retention at a carrier gas pressure approaching zero rather than relative retention values measured experimentally (relative retention time, Kovats retention index,etc.) is an invariant characteristic of a compound subjected to chromatography. For the carrier gases studied, the limiting retention values almost does not depend on the nature of the carrier gas used. The limiting indicating the complex absorption-adsorption nature of these parameters. Dissolution of a carrier gas in the stationary liquid phase has an effect on the relative retention. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2177–2186, December, 1997.  相似文献   

5.
Nonideal interactions of the sorbate and the carrier gas and adsorption of the sorbate on the adsorbent surface in capillary gas-solid chromatography were studied. Chromatographic retention was found to be largely determined by adsorption processes. With respect to the retention coefficients (capacity factors) of a sorbate (k) with different carrier gases (P1 and P2), the correlation relationshipk(P2) =A·k(P1) +B (A, B are parameters of the equation) is closely obeyed. The advantages of carbon dioxide as the carrier gas were analyzed; the use of carbon dioxide allows the efficiency of the column to be enhanced.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 627–633, March, 1996.  相似文献   

6.
On use of nitrous oxide as carrier gas the retention factors of the chromatographed compounds decrease linearly with increasing average column pressure. Other retention characteristics (relative retention, retention index) change linearly. This effect was demonstrated by using a capillary column coated with nonpolar polydimethylsiloxane phase SE-30. As shown for capillary GLC the linear correlation is valid for the same column:ki(G1,P1) = A ki(G2, P2) + B, where ki(G1, P1) and ki(G2,P2) are the retention factors of compound i at average column pressures P1 and P2 when using carrier gases G1 and G2, respectively; A and B are coefficients.  相似文献   

7.
The influence of a water vapor admixture in helium, nitrogen, and carbon dioxide on capacity coefficients of C3−C5 alcohols and pyridine during chromatography process in capillary columns with polar (PEG-20M) and nonpolar (SE-30) stationary phases was studied. The introduction of a water admixture into the carrier gas, increases the capacity coefficient of polar organic compounds on the capillary column with PEG-20M and has almost no effect on this value in the case of SE-30. The change in retention of polar organic compounds on the capillary column with the PEG-20M polar phase occurs due to a change in the properties of the stationary phase when it adsorbs water from the mobile phase. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2258–2261, November, 1998.  相似文献   

8.
The gas permeation properties of poly(1-trimethylsilyl-1-propyne) (PTMSP), poly(1-phenyl-1-propyne) (PPP), and blends of PTMSP and PPP have been determined with hydrocarbon/hydrogen mixtures. For a glassy polymer, PTMSP has unusual gas permeation properties which result from its very high free volume. Transport in PPP is similar to that observed in conventional, low-free-volume glassy polymers. In experiments with n-butane/hydrogen gas mixtures, PTMSP and PTMSP/PPP blend membranes were more permeable to n-butane than to hydrogen. PPP, on the other hand, was more permeable to hydrogen than to n-butane. As the PTMSP composition in the blend increased from 0 to 100%, n-butane permeability increased by a factor of 2600, and n-butane/hydrogen selectivity increased from 0.4 to 24. Thus, both hydrocarbon permeability and hydrocarbon/hydrogen selectivity increase with the PTMSP content in the blend. The selectivities measured with gas mixtures were markedly higher than selectivities calculated from the corresponding ratio of pure gas permeabilities. The difference between mixed gas and pure gas selectivity becomes more pronounced as the PTMSP content in the blend increases. The mixed gas selectivities are higher than pure gas selectivities because the hydrogen permeability in the mixture is much lower than the pure hydrogen permeability. For example, the hydrogen permeability in PTMSP decreased by a factor of 20 as the relative propane pressure (p/psat) in propane/hydrogen mixtures increased from 0 to 0.8. This marked reduction in permanent gas permeability in the presence of a more condensable hydrocarbon component is reminiscent of blocking of permanent gas transport in microporous materials by preferential sorption of the condensable component in the pores. The permeability of PTMSP to a five-component hydrocarbon/hydrogen mixture, similar to that found in refinery waste gas, was determined and compared with published permeation results for a 6-Å microporous carbon membrane. PTMSP exhibited lower selectivities than those of the carbon membrane, but permeability coefficients in PTMSP were nearly three orders of magnitude higher. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
The temperature dependence (50—180 °C) of the retention factor for 35 hydrocarbons and their oxygen-containing derivatives was studied using a capillary column coated with a new film-forming polymeric adsorbent polytrimethylsilylpropyne (PTMSP). The heats of adsorption for 24 organic polar and non-polar compounds on PTMSP were determined. They turned out to be lower than the heats of adsorption of the same compounds on Porapak Q widely used in gas chromatography. The new adsorbent PTMSP is characterized by high selectivity suitable for practical application.  相似文献   

10.
A selective surface flow (SSF) membrane consisting of a thin layer of a nanoporous carbon was produced in a tubular form using a macroporous alumina support. The membrane was tested for hydrogen enrichment applications. Simulated waste gases from a petrochemical refinery and a hydrogen pressure swing adsorption unit were used as the feed gas to the membrane. Very high rejections of C1C3 hydrocarbons (saturated and unsaturated) and carbon dioxide over hydrogen were exhibited by the membrane at low feed gas pressures. The hydrogen enriched stream was produced at the feed gas pressure.The separation characteristics of a polymeric poly-trimethylsilylpropyne (PTMSP) membrane in a tubular form was also tested for the same applications using identical conditions of operation. This membrane also selectively rejected heavier components of the feed gas mixture over hydrogen and produced the hydrogen enriched stream at the feed gas pressure. The SSF membrane exhibited much higher hydrogen recovery and hydrocarbon rejections than the PTMSP membrane for these applications under identical conditions of operations using identical support materials.  相似文献   

11.
A second-order non-linear partial different equation was derived to describe the dependence of carrier gas pressure in the column on the column distance and the time under temperature programmed conditions. This equation was solved numerically by the modified finite difference method for various column parameters. Constant inlet and outlet pressures were used as boundary conditions. The retention times calculated on assumption of a constant pressure profile along the column. Significant differences between retention times of corresponding solutes calculated by the two methods were found, especially when relatively long columns(L>50m) with small internal diameter(d<0.3mm)and high temperature program rates (r>5°/min)are used.  相似文献   

12.
Nanocomposite membranes based on poly(1-trimethylsilyl-1-propyne) (PTMSP) and silica were synthesized by sol–gel copolymerization of tetraethoxysilane (TEOS) with different organoalkoxysilanes in tetrahydrofuran solutions of PTMSP. The influence of the synthesis parameters (type and concentration of organoalkoxysilanes, temperature and time) on the silica conversion and the gas permeation performance of PTMSP–silica nanocomposite membranes was investigated and discussed in this paper. The nanocomposite membranes were characterized by single and mixed gas permeation, thermogravimetric analysis and scanning electron microscopy. The butane permeability and the butane/methane selectivity increased simultaneously when high silica conversion was obtained and the size of particle was in the range 20–40 nm. For the sake of comparison, nanocomposite membranes based on PTMSP were also prepared by dispersing silica particles with different functional groups into the PTMSP casting solution. The addition of fillers to the polymer matrix can be performed up to a higher content of silica (30% silica-filled PTMSP in contrast to 6 wt.% for the in situ-generated silica). In this case, the simultaneous increase in butane permeability and butane/methane selectivity was significantly higher when compared to the nanocomposite membranes prepared by sol–gel process. The addition of fillers with 50% of surface modification with hydrophobic groups (Si–C8H17 and Si–C16H33) seems not to lead to a significant increase of the butane/methane selectivity and butane permeability when compared to the silica with hydrophilic surface groups, probably because of the unfavorable polymer/filler interaction, leading to an agglomeration of the long n-alkyl groups at the surface of the polymer. An increase of butane permeability up to six-fold of unfilled polymer was obtained.  相似文献   

13.
The influence of humid carrier gases (nitrogen and carbon dioxide) on the retention of polar compounds in a capillary column with polypropylcyanophenylsiloxane stationary liquid phase OV-225 was studied. It is noted that when humid carbon dioxide is used as the carrier gas, the retention of primary amines sharply increases. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1129–1131, June, 1999.  相似文献   

14.
For a typical narrow bore (50 μm) and wide bore (320 μm) capillary column the effects of increased stationary phase film thickness (df) on the minimum detectable amount, Qo, as well as on the minimum analyte concentration, Co, are described. In treating the effect of an increased film thickness, two approaches can be followed; either the separation temperature is kept constant, resulting in larger values of the capacity ratio, k, or the column temperature is increased such as to keep k constant. For normalized chromatographic conditions the effects of both approaches on the minimum plate height, optimum carrier gas velocity, and required plate number are described, finally yielding expressions for Qo and Co for both mass flow and concentration sensitive detectors. At constant temperature, Co always increases with the film thickness for mass flow sensitive detectors (e.g. FID). Wide bore thin film columns offer the lowest value of Co attainable. For concentration sensitive detectors (e.g. TCD), Co is affected neither by column diameter nor by film thickness. The Qo–df plot for constant temperature shows a minimum, suggesting an optimum film thickness for mass flow sensitive as well as concentration sensitive detectors. The corresponding capacity ratio has a value between 0.5 and 1.5. At elevated temperatures (k constant) in combination with mass flow sensitive detectors, again an optimum film thickness exists, corresponding to a minimum value of Co. For constant capacity ratio Qo always increases with the film thickness for both types of detectors. As indicated above, in some situations the lowest values of Co and Qo are obtained at an increased film thickness, the effect being marginal. As an initial guideline, for the daily practice of capillary gas chromatography with respect to minimum values of Co and Qo, the use of thin film columns is to be preferred.  相似文献   

15.
A thin polydimethylsiloxane (PDMS) layer on polyethersulfone (PES) support was synthesized and pure and mixed gas permeation of C3H8, CH4, and H2 through it was measured. At first, a macroporous PES support was prepared by using the phase inversion method and characterized. Then, a thin layer of PDMS was coated over the support. Finally, permeation behavior of the synthesized composite membrane was investigated by pure and mixed gas experiments under various operating conditions. The synthesized PDMS/PES membrane showed much better gas permeation performance than others reported in the literature. Pure gas experiments showed that increase in the transmembrane pressure increases the permeability coefficient of heavier gases, C3H8, while decreases those of lighter ones, CH4 and H2. Exactly opposite behavior was observed in mixed gas experiments due to the competitive sorption and diffusion in the plasticized polymer matrix. Temperature was realized to induce similar effects on the permeability of pure and mixed gases. As expected, in rubbery membranes such as PDMS, permeability values of more condensable gases decrease with increasing temperature, whereas those of permanent gases increase. In the case of mixed gas experiments, increase in the C3H8 concentration in feed led to increase in the permeabilities of all the components due to the C3H8‐induced swelling of the PDMS film. High C3H8/H2 and C3H8/CH4 ideal selectivities of 22.1 and 14.7, respectively, at a transmembrane pressure of 7 atm as well as reasonable C3H8 separation factor (SF) values for all mixed gas experiments (in the range of 8.1–16.8) demonstrated the ability of the synthesized PDMS/PES membrane for the separation of organic vapors from permanent gases. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
A capillary gas chromatographic method for the quantitative analysis of diethylbenzene fractions is described. Estimation of ortho-, meta- and para-isomers and other C9 and C10 aromatic impurities is covered. The conditions developed involve the use of a capillary column of Carbowax-1540 (300 feet × 0.01 inch) under isothermal operation. The retention index data for a number of aromatics are presented at four temperatures (90, 100, 110 and 120°C). The method offers a good choice for any level of concentration both for isomers and impurities commonly encountered within a reasonable analysis time.  相似文献   

17.
The synergy of combining fast temperature programming capability and adsorption chromatography using fused silica based porous layer open tubular columns to achieve high throughput chromatography for the separation of volatile compounds is presented. A gas chromatograph with built‐in fast temperature programming capability and having a fast cool down rate was used as a platform. When these performance features were combined with the high degree of selectivity and strong retention characteristic of porous layer open tubular column technology, volatile compounds such as light hydrocarbons of up to C7, primary alcohols, and mercaptans can be well separated and analyzed in a matter of minutes. This analytical approach substantially improves sample throughput by at least a factor of ten times when compared to published methodologies. In addition, the use of porous layer open tubular columns advantageously eliminates the need for costly and time‐consuming cryogenic gas chromatography required for the separation of highly volatile compounds by partition chromatography with wall coated open tubular column technology. Relative standard deviations of retention time for model compounds such as alkanes from methane to hexane were found to be less than 0.3% (n = 10) and less than 0.5% for area counts for the compounds tested at two levels of concentration by manual injection, namely, 10 and 1000 ppm v/v (n = 10). Difficult separations were accomplished in one single analysis in less than 2 min such as the characterization of 17 components in cracked gas containing alkanes, alkenes, dienes, branched hydrocarbons, and cyclic hydrocarbons.  相似文献   

18.
The use of water vapor as carrier gas in capillary chromatography is analyzed. Under equivalent conditions, a comparison of water vapor and helium as a mobile phase was performed during the separation of diesel fuel components. The advantage of water vapor was demonstrated. The resolutions of peaks were calculated for a pair of substances, C18-iso and C20 (4.4 for water vapor and 3.9 for helium). The Van Deemter dependences were measured, and it was demonstrated that the substantially lower viscosity of the water vapor compared to helium makes it possible to perform the separation of substances in a broader range of linear velocities, comparable to hydrogen used as mobile phase. The prospects for using water vapor was demonstrated in chromatographic analysis of hydrocarbons.  相似文献   

19.
Optimization of a gas chromatographic system with two capillary columns coupled in series in a single oven for the linear temperature programmed separation of a mixture of C1 C10 hydrocarbons has been carried out using the simplex optimization method. The following four selectivity parameters were optimized: the initial temperature of the oven; the initial hold time; the temperature programmed rate; and the pressure at the mid-point of the system. The optimization procedure was monitored by the Cp criterion.  相似文献   

20.
Pure gas and hydrocarbon vapor transport properties of blends of two glassy, polyacetylene-based polymers, poly(1-trimethylsilyl-1-propyne) [PTMSP] and poly(1-phenyl-1-propyne) [PPP], have been determined. Solid-state CP/MAS NMR proton rotating frame relaxation times were determined in the pure polymers and the blends. NMR studies show that PTMSP and PPP form strongly phase-separated blends. The permeabilities of the pure polymers and each blend were determined with hydrogen, nitrogen, oxygen, carbon dioxide, and n-butane. PTMSP exhibits unusual gas and vapor transport properties which result from its extremely high free volume. PTMSP is more permeable to large organic vapors, such as n-butane, than to small, permanent gases, such as hydrogen. PPP exhibits gas permeation characteristics of conventional low free volume glassy polymers; PPP is more permeable to hydrogen than to n-butane. In PTMSP/PPP blends, both n-butane permeability and n-butane/hydrogen selectivity increase as the PTMSP content of the blends increases. © 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号