首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.

Background  

It has recently been demonstrated that the fate of adult cells is not restricted to their tissues of origin. In particular, it has been shown that bone marrow stem cells can give rise to cells of different tissues, including neural cells, hepatocytes and myocytes, expanding their differentiation potential.  相似文献   

4.
Functional magnetic resonance imaging (fMRI) has greatly advanced our current understanding of pain, although most studies to date have focused on imaging of cortical structures. In the present study, we have used fMRI at 3 T to investigate the neural activity evoked by thermal sensation and pain (42°C and 46°C) throughout the entire lower neuroaxis from the first synapse in the spinal cord rostral to the thalamus in healthy subjects. The results demonstrate that noxious thermal stimulation (46°C) produces consistent activity within various structures known to be involved in the pain matrix including the dorsal spinal cord, reticular formation, periaqueductal gray and rostral ventral medulla. However, additional areas of activity were evident that are not considered to be part of the pain matrix, including the olivary nucleus. Thermal stimulation (42°C) reported as either not painful or mildly painful produced quantitative, but not qualitative, differences in neuronal activity depending on the order of experiments. Activity was greater in the spinal cord and brain stem in earlier experiments, compared with repeated experiments after the more noxious (46°C) stimulus had been applied. This study provides significant insight into how the lower neuroaxis integrates and responds to pain in humans.  相似文献   

5.

Background  

Human neural stem cells (hNSC) have the potential to provide novel cell-based therapies for neurodegenerative conditions such as multiple sclerosis and Parkinson's disease. In order to realise this goal, protocols need to be developed that allow for large quantities of hNSC to be cultured efficiently. As such, it is important to identify factors which enhance the growth of hNSC. In vivo, stem cells reside in distinct microenvironments or niches that are responsible for the maintenance of stem cell populations. A common feature of niches is the presence of the extracellular matrix molecule, laminin. Therefore, this study investigated the effect of exogenous laminin on hNSC growth.  相似文献   

6.

Background  

Oxidative stress has shown to contribute in the mechanisms underlying apoptotic cell death occuring in AIDS-dementia complex. Here we investigated the role of peroxynitrite in apoptosis occurring in astroglial cells incubated with supernatants of HIV-infected human primary macrophages (M/M).  相似文献   

7.

Background  

Newborn granule neurons are generated from proliferating neural stem/progenitor cells and integrated into mature synaptic networks in the adult dentate gyrus of the hippocampus. Since light/dark variations of the mitotic index and DNA synthesis occur in many tissues, we wanted to unravel the role of the clock-controlled Period2 gene (mPer2) in timing cell cycle kinetics and neurogenesis in the adult DG.  相似文献   

8.

Background  

Neural stem cells (NSCs) can be isolated from the adult mammalian brain and expanded in culture, in the form of cellular aggregates called neurospheres. Neurospheres provide an in vitro model for studying NSC behaviour and give information on the factors and mechanisms that govern their proliferation and differentiation. They are also a promising source for cell replacement therapies of the central nervous system. Neurospheres are complex structures consisting of several cell types of varying degrees of differentiation. One way of characterising neurospheres is to analyse their gene expression profiles. The value of such studies is however uncertain since they are heterogeneous structures and different populations of neurospheres may vary significantly in their gene expression.  相似文献   

9.
One of the most common diseases that affect human red blood cells (RBCs) is anaemia. To diagnose anaemia, the following methods are typically employed: an identification process that is based on measuring the level of haemoglobin and the classification of RBCs based on a microscopic examination in blood smears. This paper presents a proposed algorithm for detecting and counting three types of anaemia-infected red blood cells in a microscopic coloured image using circular Hough transform and morphological tools. Anaemia cells include sickle, elliptocytosis, microsite cells and cells with unknown shapes. Additionally, the resulting data from the detection process have been analysed by a prevalent data analysis technique: the neural network. The experimental results for this model have demonstrated high accuracy for analysing healthy/unhealthy cells. This algorithm has achieved a maximum detection of approximately 97.8% of all cells in 21 microscopic images. Effectiveness rates of 100%, 98%, 100%, and 99.3% have been achieved using neural networks for sickle cells, elliptocytosis cells, microsite cells and cells with unknown shapes, respectively.  相似文献   

10.
Synchronization is one of the mechanisms by which the brain encodes information. The observed synchronization of neuronal activity has, however, several levels of fluctuations, which presumably regulate local features of specific areas. This means that biological neural networks should have an intrinsic mechanism able to synchronize the neuronal activity but also to preserve the firing capability of individual cells. Here, we investigate the input-output relationship of a biological neural network from developing mammalian brain, i.e., the hippocampus. We show that the probability of occurrence of synchronous output activity (which consists in stereotyped population bursts recorded throughout the hippocampus) is encoded by a sigmoidal transfer function of the input frequency. Under this scope, low-frequency inputs will not produce any coherent output while high-frequency inputs will determine a synchronous pattern of output activity (population bursts). We analyze the effect of the network size (N) on the parameters of the transfer function (threshold and slope). We found that sigmoidal functions realistically simulate the synchronous output activity of hippocampal neural networks. This outcome is particularly important in the application of results from neural network models to neurobiology.  相似文献   

11.
Long echo time (TE=270 ms) in vivo proton NMR spectra resembling human brain metabolite patterns were simulated for lineshape fitting (LF) and quantitative artificial neural network (ANN) analyses. A set of experimental in vivo 1H NMR spectra were first analyzed by the LF method to match the signal-to-noise ratios and linewidths of simulated spectra to those in the experimental data. The performance of constructed ANNs was compared for the peak area determinations of choline-containing compounds (Cho), total creatine (Cr), and N-acetyl aspartate (NAA) signals using both manually phase-corrected and magnitude spectra as inputs. The peak area data from ANN and LF analyses for simulated spectra yielded high correlation coefficients demonstrating that the peak areas quantified with ANN gave similar results as LF analysis. Thus, a fully automated ANN method based on magnitude spectra has demonstrated potential for quantification of in vivo metabolites from long echo time spectroscopic imaging.  相似文献   

12.
A facile method was developed to fabricate a high sensitive, reproducible and recyclable surface enhanced Raman spectroscopy (SERS) active glass capillary. The Au nanoparticles were synthesized through a seed‐mediated growth approach and then self‐assembled onto the inner wall of glass capillaries. The attached Au nanoparticles were homogeneously coated with thin silica shell by using the silane coupling agent to functionalize the Au surface. By using thiophenol (TP) as SERS probe molecules, the substrate exhibited robust SERS effects. The adsorbed SERS probe molecules could be rapidly and completely removed away by flowing sodium borohydride solution and thus to obtain a refresh Au@SiO2 film‐coated substrate for the cyclic detection on different species. The on‐line detection of TP and malachite green (MG) with different concentrations was performed in the flowing system. The intensities of SERS signals were dependent on concentrations of the detected molecules. The results indicated that the SERS‐active substrate has potential applications on the on‐line qualitative and quasi‐quantitative analysis. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
ABSTRACT: BACKGROUND: Cell therapy is a potential therapeutic approach for several neurodegenetative disease, including Huntington Disease (HD). To evaluate the putative efficacy of cell therapy in HD, most studies have used excitotoxic animal models with only a few studies having been conducted in genetic animal models. Genetically modified animals should provide a more accurate representation of human HD, as they emulate the genetic basis of its etiology. RESULTS: In this study, we aimed to assess the therapeutic potential of a human striatal neural stem cell line (STROC05) implanted in the R6/2 transgenic mouse model of HD. As DARPP-32 GABAergic output neurons are predominately lost in HD, STROC05 cells were also predifferentiated using purmorphamine, a hedgehog agonist, to yield a greater number of DARPP-32 cells. A bilateral injection of 4.5x105 cells of either undifferentiated or predifferentiated DARPP-32 cells, however, did not affect outcome compared to a vehicle control injection. Both survival and neuronal differentiation remained poor with a mean of only 161 and 81 cells surviving in the undifferentiated and differentiated conditions respectively. Only a few cells expressed the neuronal marker beta-III-tubulin. CONCLUSIONS: Although the rapid brain atrophy and short life-span of the R6/2 model constitute adverse conditions to detect potentially delayed treatment effects, significant technical hurdles, such as poor cell survival and differentiation, were also sub-optimal. Further consideration of these aspects is therefore needed in more enduring transgenic HD models to provide a definite assessment of this cell line's therapeutic relevance. However, a combination of treatments is likely needed to affect outcome in transgenic models of HD.  相似文献   

14.
Periodic amplitude modulations (AMs) of an acoustic stimulus are presumed to be encoded in temporal activity patterns of neurons in the cochlear nucleus. Physiological recordings indicate that this temporal AM code is transformed into a rate-based periodicity code along the ascending auditory pathway. The present study suggests a neural circuit for the transformation from the temporal to the rate-based code. Due to the neural connectivity of the circuit, bandpass shaped rate modulation transfer functions are obtained that correspond to recorded functions of inferior colliculus (IC) neurons. In contrast to previous modeling studies, the present circuit does not employ a continuously changing temporal parameter to obtain different best modulation frequencies (BMFs) of the IC bandpass units. Instead, different BMFs are yielded from varying the number of input units projecting onto different bandpass units. In order to investigate the compatibility of the neural circuit with a linear modulation filterbank analysis as proposed in psychophysical studies, complex stimuli such as tones modulated by the sum of two sinusoids, narrowband noise, and iterated rippled noise were processed by the model. The model accounts for the encoding of AM depth over a large dynamic range and for modulation frequency selective processing of complex sounds.  相似文献   

15.

Background  

S100B is considered an astrocytic in-situ marker and protein levels in cerebrospinal fluid (CSF) or serum are often used as biomarker for astrocytic damage or dysfunction. However, studies on S100B in the human brain are rare. Thus, the distribution of S100B was studied by immunohistochemistry in adult human brains to evaluate its cell-type specificity.  相似文献   

16.
Shao ZY  Zhai BJ  Zhao CL  Hu K  Shen DM  Wu F 《Ultrasonics》2008,48(4):297-302
Multidrug resistance (MDR) is one of the major obstacles to successful chemotherapy of human malignancies. Although many strategies have been explored to overcome MDR, none of them have been proven to be clinically useful until now. The aim of this study was to investigate whether a novel therapeutic ultrasound (US) approach would have useful effects on the reversal of MDR in cancer cells. Wild-type and MDR phenotype (HepG2/ADM) cells of the human hepatocarcinoma cell line HepG2 were exposed to 0.8 MHz US at an intensity of 0.43 W/cm2 for a 9 s exposure (total energy density: 3.87 J/cm2). After US exposure, cell number and viability were counted immediately, and flow cytometry was performed to measure retention of rhodamine 123 and adriamycin in HepG2 and HepG2/MDR cells. Both cell lines were then incubated in suspension with adriamycin, vincristine, etoposide, cisplatin and 5-fluorouracil, respectively, and the MTT assay was used to determine cytotoxicity. The results showed that US exposure could significantly increase the uptake of Rh123 and ADM by HepG2/ADM tumor cells. The resistant index for the chemotherapeutic drugs was significantly lower in the US-exposed HepG2/ADM cells than in those not exposed to US. It was therefore concluded that US exposure could enhance the sensitivity of HepG2/ADM tumor cells to these chemotherapeutic agents, and the functional and structural changes induced by previous US exposure in MDR tumor cells may be responsible for it. However, further study is needed to investigate the mechanism behind US-mediated reversal of MDR.  相似文献   

17.
It is well-recognized that DNA methylation and histone modifications play critical roles in epigenetic regulation of gene activity through the alteration of chromatin structure. Recent studies have shown that in a subset of cancer cells, the silencing of the human E-cadherin (CDH1) gene is associated with hypermethylation of the CpG island. However, the associated molecular mechanism remains unclear. To understand the mechanism, we have investigated the alteration of CpG island methylation and histone modifications during the reactivation of the CDH1 gene by treatment with 5-aza-2′-deoxycytidine (5-aza-dC). Although the CDH1 gene expression was recovered by treatment with 5-aza-dC in a liver cancer cell line Li21, the methylation status of the entire CpG island and acetylation and methylation status of associated histones were not significantly altered. These results demonstrate that the silenced CDH1 gene can be reactivated without apparent alteration of histone modification or CpG island methylation.  相似文献   

18.
This article examines the masking by anthropogenic noise of beluga whale calls. Results from human masking experiments and a software backpropagation neural network are compared to the performance of a trained beluga whale. The goal was to find an accurate, reliable, and fast model to replace lengthy and expensive animal experiments. A beluga call was masked by three types of noise, an icebreaker's bubbler system and propeller noise, and ambient arctic ice-cracking noise. Both the human experiment and the neural network successfully modeled the beluga data in the sense that they classified the noises in the same order from strongest to weakest masking as the whale and with similar call-detection thresholds. The neural network slightly outperformed the humans. Both models were then used to predict the masking of a fourth type of noise, Gaussian white noise. Their prediction ability was judged by returning to the aquarium to measure masked-hearing thresholds of a beluga in white noise. Both models and the whale identified bubbler noise as the strongest masker, followed by ramming, then white noise. Natural ice-cracking noise masked the least. However, the humans and the neural network slightly overpredicted the amount of masking for white noise. This is neglecting individual variation in belugas, because only one animal could be trained. Comparing the human model to the neural network model, the latter has the advantage of objectivity, reproducibility of results, and efficiency, particularly if the interference of a large number of signals and noise is to be examined.  相似文献   

19.

Background  

Auditory brainstem responses (ABRs) are used to study auditory acuity in animal-based medical research. ABRs are evoked by acoustic stimuli, and consist of an electrical signal resulting from summated activity in the auditory nerve and brainstem nuclei. ABR analysis determines the sound intensity at which a neural response first appears (hearing threshold). Traditionally, threshold has been assessed by visual estimation of a series of ABRs evoked by different sound intensities. Here we develop an automated threshold detection method that eliminates the variability and subjectivity associated with visual estimation.  相似文献   

20.

Background

The induction of sterile immunity and long lasting protection against malaria has been effectively achieved by immunization with sporozoites attenuated by gamma-irradiation or through deletion of genes. For mice immunized with radiation attenuated sporozoites (RAS) it has been shown that intrahepatic effector memory CD8+ T cells are critical for protection. Recent studies have shown that immunization with genetically attenuated parasites (GAP) in mice is also conferred by liver effector memory CD8+ T cells.

Findings

In this study we analysed effector memory cell responses after immunization of GAP that lack the P52 protein. We demonstrate that immunization with p52 -GAP sporozoites also results in a strong increase of effector memory CD8+ T cells, even 6 months after immunization, whereas no specific CD4+ effector T cells response could be detected. In addition, we show that the increase of effector memory CD8+ T cells is specific for the liver and not for the spleen or lymph nodes.

Conclusions

These results indicate that immunization of mice with P. berghei p52 -GAP results in immune responses that are comparable to those induced by RAS or GAP lacking expression of UIS3 or UIS4, with an important role implicated for intrahepatic effector memory CD8+ T cells. The knowledge of the mediators of protective immunity after immunization with different GAP is important for the further development of vaccines consisting of genetically attenuated sporozoites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号