首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Neuroimaging and neuropsychological literature show functional dissociations in brain activity during processing of stimuli belonging to different semantic categories (e.g., animals, tools, faces, places), but little information is available about the time course of object perceptual categorization. The aim of the study was to provide information about the timing of processing stimuli from different semantic domains, without using verbal or naming paradigms, in order to observe the emergence of non-linguistic conceptual knowledge in the ventral stream visual pathway. Event related potentials (ERPs) were recorded in 18 healthy right-handed individuals as they performed a perceptual categorization task on 672 pairs of images of animals and man-made objects (i.e., artifacts).

Results

Behavioral responses to animal stimuli were ~50 ms faster and more accurate than those to artifacts. At early processing stages (120–180 ms) the right occipital-temporal cortex was more activated in response to animals than to artifacts as indexed by posterior N1 response, while frontal/central N1 (130–160) showed the opposite pattern. In the next processing stage (200–260) the response was stronger to artifacts and usable items at anterior temporal sites. The P300 component was smaller, and the central/parietal N400 component was larger to artifacts than to animals.

Conclusion

The effect of animal and artifact categorization emerged at ~150 ms over the right occipital-temporal area as a stronger response of the ventral stream to animate, homomorphic, entities with faces and legs. The larger frontal/central N1 and the subsequent temporal activation for inanimate objects might reflect the prevalence of a functional rather than perceptual representation of manipulable tools compared to animals. Late ERP effects might reflect semantic integration and cognitive updating processes. Overall, the data are compatible with a modality-specific semantic memory account, in which sensory and action-related semantic features are represented in modality-specific brain areas.  相似文献   

2.
The adsorption of activated nitrogen on a stepped Pt(S)-[9(111) × (111)] face was investigated by LEED, AES and flash desorption. Nitrogen was supplied to the crystal from a high frequency discharge tube. For comparison some orienting measurements were also carried out on smooth (111) and (100) platinum faces. Activated nitrogen is adsorbed at room temperature on all three faces up to about half a monolayer coverage. No additional LEED patterns indicating long range order of the adsorbed layer were found. By flash heating a small desorption peak at 120°C and a large peak between 175 and 230°C depending on the initial coverage were observed on the (111) type faces. The desorption can be described approximately by a second order rate law with an energy of activation of 25± 3 kcal/mole. No influence of surface steps on the properties of the adsorbed layer was detected. On the (100) face two coverage independent desorption maxima at 120 and 170°C of about equal intensities were found.  相似文献   

3.
The effect of die temperature on the mechanical performance and morphology of polyethylene (PE) pipe prepared via mandrel rotation extrusion is described. The experimental results showed that during the rotation extrusion of PE pipe, the hoop flow caused by the mandrel rotation was superimposed on the axial flow to deviate the formed shish-kebab from the axial direction which was favorable to improve the hoop strength of the PE pipe. However, high die temperature caused relaxation of most of the oriented molecular chains and the consequent formation of isotropic crystals in the PE pipe, whereas too low a die temperature led to imperfections in the PE pipe. As a result, there was an optimum temperature range for the enhancement of the hoop strength. When the mandrel rotated at 6 r/min, the hoop strength of the PE pipes prepared at the die temperature of 170°C reached the maximum value, 31.8 MPa, 22% and 29% higher than that at 150°C and 210°C, respectively.  相似文献   

4.

Background  

In this study, we quantified age-related changes in the time-course of face processing by means of an innovative single-trial ERP approach. Unlike analyses used in previous studies, our approach does not rely on peak measurements and can provide a more sensitive measure of processing delays. Young and old adults (mean ages 22 and 70 years) performed a non-speeded discrimination task between two faces. The phase spectrum of these faces was manipulated parametrically to create pictures that ranged between pure noise (0% phase information) and the undistorted signal (100% phase information), with five intermediate steps.  相似文献   

5.

Background  

Current cognitive neuroscience models predict a right-hemispheric dominance for face processing in humans. However, neuroimaging and electromagnetic data in the literature provide conflicting evidence of a right-sided brain asymmetry for decoding the structural properties of faces. The purpose of this study was to investigate whether this inconsistency might be due to gender differences in hemispheric asymmetry.  相似文献   

6.
We demonstrated the generation of a cylindrical vector laser beam using a pentaprism interferometer. The solid-state interferometer was made up of a trapezoid and right-angle prism, whose hypotenuse face was implemented with a polarization beam splitter coating that split a rotated TEM01 mode beam into two orthogonal polarizations. The Ppolarized beam was reflected inside the prism twice, allowing a mode pattern without inversion; however, the Spolarized beam was reflected once resulting in mode patterns that form P-polarized beams rotated by 90°. We also held the phase shift of the two beams to zero by use of a phase shifter, thus the output of the superimposed beam was a radially polarized beam. We demonstrated the mode pattern and polarization purity of the output beam through the use of this configuration.  相似文献   

7.
Clean [111] oriented silver field emitting tips have been exposed to oxygen at 10?3 Torr for 1 min at temperatures ranging from ? 170 to 200°C. From 50 to 200°C, an adsorption structure is formed that is stable in oxygen. The structure is characterized by intensely emitting regions on either side of enlarged {110}, {210} and {310} faces and a dark region in the (111)-{100} zone line directions. For adsorption from ? 170 to 200°C, the structure of the patterns depends distinctly on the adsorption temperature because the coverages are different and adsorption is activated. Oxygen adsorption at 10?3 Torr for 1 min at 0°C causes an increase in the average work function of 1.15 eV. At 0°C, silver was exposed increasingly at 10?6 Torr until 6100 L was reached. The work function increased progressively by 0.61 eV for this exposure. The {111}, {100}, {311}, {211} and {533} faces are attacked first. Then, the {110} faces are attacked followed by the {210} {310} and {320}. Heating of the adsorption layer formed at 0°C produced no changes in pattern and work function up to 100°C. Between 100 and 200°C, a strong decrease in work function and changes in the pattern result from oxygen penetration into the bulk.  相似文献   

8.
We search for faces of the convex set consisting of all separable states, which are affinely isomorphic to simplices, to get separable states with unique decompositions. In the two-qutrit case, we found that six product vectors spanning a five dimensional space give rise to a face isomorphic to the 5-dimensional simplex with six vertices, under a suitable linear independence assumption. If the partial conjugates of six product vectors also span a 5-dimensional space, then this face is inscribed in the face for PPT states whose boundary shares the fifteen 3-simplices on the boundary of the 5-simplex. The remaining boundary points consist of PPT entangled edge states of rank four. We also show that every edge state of rank four arises in this way. If the partial conjugates of the above six product vectors span a 6-dimensional space then we have a face isomorphic to 5-simplex, whose interior consists of separable states with unique decompositions, but with non-symmetric ranks. We also construct a face isomorphic to the 9-simplex. As applications, we give answers to questions in the literature Chen and Djokovi? (J Math Phys 54:022201, 2013) and Chen and Djokovi? (Commun Math Phys 323:241–284, 2013), and construct 3 ? 3PPT states of type (9,5). For the qubit-qudit cases with d ≥ 3, we also show that (d + 1)-dimensional subspaces give rise to faces isomorphic to the d-simplices, in most cases.  相似文献   

9.

Background  

Human faces provide important signals in social interactions by inferring two main types of information, individual identity and emotional expression. The ability to readily assess both, the variability and consistency among emotional expressions in different individuals, is central to one's own interpretation of the imminent environment. A factorial design was used to systematically test the interaction of either constant or variable emotional expressions with constant or variable facial identities in areas involved in face processing using functional magnetic resonance imaging.  相似文献   

10.
The melting point of a conventional isotactic polypropylene (PP) was enhanced by a rapid annealing procedure of an extruded sheet composed of β trigonal form crystals having thick lamellae, which was prepared by T-die processing with a specific β-nucleating agent, N,N′-dicyclohexyl-2,6-naphthalenedicarboxamide. Although the melting point of PP with α monoclinic form, prepared by a conventional processing method, is known to be located around at 165°C, the sample obtained by the present technique showed a higher melting point, 170°C. The phase transformation from β-to α-form crystals, retaining the lamellar thickness, was responsible for the melting point elevation.  相似文献   

11.

Background

Multi-sensory integration is necessary for organisms to discriminate different environmental stimuli and thus determine behavior. Caenorhabditis elegans has 12 pairs of amphid sensory neurons, which are involved in generating behaviors such as thermotaxis toward cultivation temperature, and chemotaxis toward chemical stimuli. This arrangement of known sensory neurons and measurable behavioral output makes C. elegans suitable for addressing questions of multi-sensory integration in the nervous system. Previous studies have suggested that C. elegans can process different chemoattractants simultaneously. However, little is known about how these organisms can integrate information from stimuli of different modality, such as thermal and chemical stimuli.

Results

We studied the behavior of a population of C. elegans during simultaneous presentation of thermal and chemical stimuli. First, we examined thermotaxis within the radial temperature gradient produced by a feedback-controlled thermoregulator. Separately, we examined chemotaxis toward sodium chloride or isoamyl alcohol. Then, assays for simultaneous presentations of 15°C (colder temperature than 20°C room temperature) and chemoattractant were performed with 15°C-cultivated wild-type worms. Unlike the sum of behavioral indices for each separate behavior, simultaneous presentation resulted in a biased migration to cold regions in the first 10 min of the assay, and sodium chloride-regions in the last 40 min. However, when sodium chloride was replaced with isoamyl alcohol in the simultaneous presentation, the behavioral index was very similar to the sum of separate single presentation indices. We then recorded tracks of single worms and analyzed their behavior. For behavior toward sodium chloride, frequencies of forward and backward movements in simultaneous presentation were significantly different from those in single presentation. Also, migration toward 15°C in simultaneous presentation was faster than that in 15°C-single presentation.

Conclusion

We conclude that worms preferred temperature to chemoattractant at first, but preferred the chemoattractant sodium chloride thereafter. This preference was not seen for isoamyl alcohol presentation. We attribute this phase-dependent preference to the result of integration of thermosensory and chemosensory signals received by distinct sensory neurons.  相似文献   

12.

Background

Recent studies have shown that the human right-hemispheric auditory cortex is particularly sensitive to reduction in sound quality, with an increase in distortion resulting in an amplification of the auditory N1m response measured in the magnetoencephalography (MEG). Here, we examined whether this sensitivity is specific to the processing of acoustic properties of speech or whether it can be observed also in the processing of sounds with a simple spectral structure. We degraded speech stimuli (vowel /a/), complex non-speech stimuli (a composite of five sinusoidals), and sinusoidal tones by decreasing the amplitude resolution of the signal waveform. The amplitude resolution was impoverished by reducing the number of bits to represent the signal samples. Auditory evoked magnetic fields (AEFs) were measured in the left and right hemisphere of sixteen healthy subjects.

Results

We found that the AEF amplitudes increased significantly with stimulus distortion for all stimulus types, which indicates that the right-hemispheric N1m sensitivity is not related exclusively to degradation of acoustic properties of speech. In addition, the P1m and P2m responses were amplified with increasing distortion similarly in both hemispheres. The AEF latencies were not systematically affected by the distortion.

Conclusions

We propose that the increased activity of AEFs reflects cortical processing of acoustic properties common to both speech and non-speech stimuli. More specifically, the enhancement is most likely caused by spectral changes brought about by the decrease of amplitude resolution, in particular the introduction of periodic, signal-dependent distortion to the original sound. Converging evidence suggests that the observed AEF amplification could reflect cortical sensitivity to periodic sounds.  相似文献   

13.
We have applied first-principles calculations, based on the density functional theory, toinvestigate the stability and electronic properties of double-walled carbon nanocones,60°60°, 120°120° and 60°120° with different rotation anglesbetween the walls. We have shown that the most favorable double-walled nanocone studiedhere is that of angles of 60°60°, with rotation angle of 36° and distance between apexes of 4.22 Å.We have found that, the interaction between the walls of rotated double-walled nanoconesintroduce geometric distortion in gap states, such as in Fermi level. These results shouldhave consequences on the field emission properties of double-walled carbon nanocones.Additionally, we also investigated the spin polarization of such structures, and we havefound unpaired electrons, which induces a total spin from 1 and 1/2 for 60°60° and 60°120° double cones, respectively.  相似文献   

14.

Background

Although cerebral palsy (CP) is usually defined as a group of permanent motor disorders due to non-progressive disturbances in the developing fetal or infant brain, recent research has shown that CP individuals are also characterized by altered somatosensory perception, increased pain and abnormal activation of cortical somatosensory areas. The present study was aimed to examine hemispheric differences on somatosensory brain processing in individuals with bilateral CP and lateralized motor impairments compared with healthy controls. Nine CP individuals with left-dominant motor impairments (LMI) (age range 5–28 yrs), nine CP individuals with right-dominant motor impairments (RMI) (age range 7–29 yrs), and 12 healthy controls (age range 5–30 yrs) participated in the study. Proprioception, touch and pain thresholds, as well as somatosensory evoked potentials (SEP) elicited by tactile stimulation of right and left lips and thumbs were compared.

Results

Pain sensitivity was higher, and lip stimulation elicited greater beta power and more symmetrical SEP amplitudes in individuals with CP than in healthy controls. In addition, although there was no significant differences between individuals with RMI and LMI on pain or touch sensitivity, lip and thumb stimulation elicited smaller beta power and more symmetrical SEP amplitudes in individuals with LMI than with RMI.

Conclusions

Our data revealed that brain processing of somatosensory stimulation was abnormal in CP individuals. Moreover, this processing was different depending if they presented right- or left-dominant motor impairments, suggesting that different mechanisms of sensorimotor reorganization should be involved in CP depending on dominant side of motor impairment.  相似文献   

15.
We have analysed the vertical transport properties of a GaAs/AlAs short period superlattice as the crossed magnetic field is rotated in the plane of the layers. The rotation of the magnetic field has been used to probe the interface roughness along the different in-plane crystallographic directions. Two maxima separated by 180° in the current intensity have been observed when the magnetic field is rotated through 360°. We interpret our results in terms of anisotropic scattering from elliptical interface defects of which the great axis is along [11̄0] and the minor one along [110].  相似文献   

16.
The linear antiferromagnetic birefringence of sound in hematite (α-Fe2O3) residing in the collinear easy-axis phase (LC 3) below the Morin point is experimentally studied. The plane of polarization of a linearly polarized transverse acoustic wave propagating along the trigonal axis C 3 of a hematite crystal placed in a magnetic field H applied in the basal plane (HC 3, 3.5 ≤ H ≤ 15 kOe) is found to rotate after a temperature-driven orientational phase transition to the easy-axis state. The angle of rotation exhibits a 180° angular dependence on the direction of the magnetic field in the basal plane and varies from zero to ~π/2. Numerical estimates suggest that the conditions necessary for rotation of the plane of polarization through appreciable angles (~π/2) can be satisfied in the easy-axis phase at orientational phase transition temperatures close to the Morin point, which actually takes place in the fields employed. The results obtained are described sufficiently well by the theory of linear antiferromagnetic birefringence of sound (E.A. Turov) and confirm its main conclusions.  相似文献   

17.
Fe100???x Ni x samples with x?=?22.5, 30.0 and 40.0 at.% Ni were prepared by mechanical alloying (MA) with milling times of 10, 24, 48 and 72 h, a ball mass to powder mass (BM/PM) ratio of 20:1 and rotation velocity of 280 rev/min. Then the samples were sintered at 1,000°C and characterized by X-ray diffraction (XRD) and transmission Mössbauer spectrometry (TMS). From the refinement of the X ray patterns we found in this composition range two crystalline phases, one body centered cubic (BCC), one face centered cubic (FCC) and some samples show FeO and Fe3O4 phases. The obtained grain size of the samples shows their nanostructured character. Mössbauer spectra were fitted using a model with two hyperfine magnetic field distributions (HMFDs), and a narrow singlet. One hyperfine field distribution corresponds to the ferromagnetic BCC grains, the other to the ferromagnetic FCC grains (Taenite), and the narrow singlet to the paramagnetic FCC grains (antitaenite). Some samples shows a paramagnetic doublet which corresponds to FeO and two sextets corresponding to the ferrimagnetic Fe3O4 phase. In this fit model we used a texture correction in order to take into account the interaction between the particles with flake shape and the Mössbauer $\upgamma$ -rays.  相似文献   

18.
${\text{BaCe}}_{0.7} {\text{Sn}}_{0.1} {\text{Gd}}_{0.2} {\text{O}}_{3 - \sigma } $ (BCSG) and ${\text{BaCe}}_{0.8} {\text{Gd}}_{0.2} {\text{O}}_{3 - \sigma } $ (BCG) powders were prepared by solid-state reaction method. After exposure in 5% CO2?+?5% H2O?+?90% N2 at 500 °C for 5 h, the BCSG powders were hardly affected while the BCG powders decomposed into CeO2 and BaCO3 phases. Moreover, the relative density of BCSG reaches 97%, while the BCG just displays 91% after sintering at 1,400 °C. The BCSG displays a conductivity of 0.01 S/cm at 700 °C in humid hydrogen, which is quite close to 0.012 S/cm for BCG. A fuel cell with BCSG exhibits 1.02 V for open circuit voltage, 420 mW/cm2 for peak performance and 0.23 Ω cm2 for interfacial resistance at 700 °C, respectively.  相似文献   

19.
20.
The adsorption of CO, O2, and H2O was studied on both the (111) and [6(111) × (100)] crystal faces of iridium. The techniques used were LEED, AES, and thermal desorption. Marked differences were found in surface structures and heats of adsorption on these crystal faces. Oxygen is adsorbed in a single bonding state on the (111) face. On the stepped iridium surface an additional bonding state with a higher heat of adsorption was detected which can be attributed to oxygen adsorbed at steps. On both (111) and stepped iridium crystal faces the adsorption of oxygen at room temperature produced a (2 × 1) surface structure. Two surface structures were found for CO adsorbed on Ir(111); a (√3 × √3)R30° at an exposure of 1.5–2.5 L and a (2√3 × 2√3)R30° at higher coverage. No indication for ordering of adsorbed CO was found on the Ir(S)-[6(111) × (100)] surface. No significant differences in thermal desorption spectra of CO were found on these two faces. H2O is not adsorbed at 300 K on either iridium crystal face. The reaction of CO with O2 was studied on Ir(111) and the results are discussed. The influence of steps on the adsorption behaviour of CO and O2 on iridium and the correlation with the results found previously on the same platinum crystal faces are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号