首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Micellar-enhanced ultrafiltration is a separation technique which can be used to remove metal ions or dissolved organics from water. Metal ions bind to the surface of negatively charged micelles of an anionic surfactant while organic solutes tend to dissolve or solubilized within the micelles. The mixture is then forced through an ultrafiltration membrane with pore sizes small enough to block passage of the micelles and associated metal ions and/or dissolved organics. Monomeric or unassociated surfactant passes through the membrane and does not contribute to the separation. This paper considers advantages of addition of small concentrations of nonionic surfactant to an anionic surfactant; the resulting anionic-nonionic mixed micelles exhibit negative deviation from ideality of mixing which leads to a smaller fraction of the surfactant being present as monomer and a subsequently larger fraction present in the micellar form. The addition of nonionic surfactant improved the separation of divalent zinc substantially at total concentrations above the critical micelle concentration (cmc) of the anionic surfactant. Both zinc and tert-butylphenol (a nonionic organic solute) show unexpected rejection at surfactant concentrations moderately below the cmc, where micelles are absent. This is considered as due to a higher surfactant concentration in the gel layer adjacent to the membrane where micelles are present. Reduction of this rejection at lower transmembrane pressure drops supports this mechanism. Some rejection of zinc was observed in the absence of surfactant but not of tert-butylphenol, indicating an additional effect of membrane charge for ionic solutes. Copyright 1999 Academic Press.  相似文献   

2.
The EPR spectra of radical surfactant probes embedded in cetyltrimethylammonium bromide (CTAB) and trimethylbenzene (TMB) stable water emulsions (TMB/CTAB = 13) were analyzed to provide information on the kinetics of formation of micelle-templated silicoaluminas (MTSA) at 343 K, obtained by means of silica and alumina, solved in alkaline solutions, at different Si/Al ratios. Textural (surface area, pore volume, pore size, surfactant content) and structural characterization of both as-synthesized and calcined MTSA were performed by means of nitrogen sorption isotherms, TEM, and chemical analysis. This analysis showed that TMB worked as a swelling agent of the CTAB micelles, providing large-pore homogeneous and stable MTSA at TMB/CTAB = 13 for Si/Al from infinity to 10. A demixing of the emulsion occurs at Si/Al < 10: at Si/Al = 7, a double wide-and-narrow pore structure was formed; then, at Si/Al = 5, an amorphous material was obtained. At Si/Al > or = 10, the computer-aided analysis of the EPR spectra as a function of the synthesis time indicated the distribution of the probes in two different environments: "micellar" probes inserted in the surfactant aggregates, whose mobility decreases over the synthesis time, thus reporting on the progressive modification of the surfactant aggregates structure and the solid condensation, and "interacting" probes due to probe-surfactant heads electrostatically interacting with the charged surface sites induced by alumina incorporation in the silica network. This last fraction increases its relative amount over the synthesis time, informing about the condensation and structuration of the MTSA. Without alumina, the "interacting" component is absent in the EPR spectra because TMB preferentially interacts with the surfactant headgroups by cation-pi interactions, thus preventing the interactions of these headgroups with silanols. When alumina is added, the negatively charged silicoaluminate at the surface promotes the interaction of the ammonium headgroups with the surface, and some Na+ cations also interact with TMB by cation-pi interaction and contribute to decreasing the interaction of the headgroups with TMB. Therefore, increasing alumina contents promote electrostatic interactions between the positively charged surfactant heads and the negatively charged silicoaluminate groups. The strong interaction of the surfactants with the silicoaluminate surface allows the formation of a monolayerlike structure of surfactant, which is not observed in the absence of alumina. The synthesis is slowed by increasing alumina contents due to a destructuration effect of alumina in the MTSA formation.  相似文献   

3.
In ligand-modified micellar-enhanced ultrafiltration (LM-MEUF), a surfactant and a ligand are added to an aqueous solution containing ions of like charge. The ligand forms a complex with the target ion of interest and becomes incorporated in the micelle. This solution is then treated by an ultrafiltration process with membrane pore sizes small enough to reject the micelles and their solubilized metal–ligand complex. Previous studies have demonstrated the technical feasibility of LM-MEUF with copper rejection exceeding 99% with no removal of calcium using several different ligands. The ability to regenerate the surfactant/ligand for reuse has also been shown. In this study, an economic analysis of LM-MEUF (with regeneration) for a 1×105 gal/day unit is reported. The effects of important parameters are investigated; including feed surfactant, ligand, and copper concentrations. The results from the sensitivity analysis are used to compare the cost of LM-MEUF for copper removal and recovery to the conventional copper solvent extraction process. The comparative economic analysis indicates a 17% higher capital and a 43% higher operating cost for LM-MEUF process compared to the solvent extraction process.  相似文献   

4.
Force/distance curves for silicon nitride tip/flat silica or alumina coated by a layer of mixed micelles of cationic/anionic surfactant are measured by using AFM. Mixtures of SDS/C(n)TAB (with molecular ratios of 3:1 and 20:1) and C(n)TAB/SDS (with molecular ratio of 85:15) were used for alumina and silica substrates, respectively. The number of carbon atoms per C(n)TAB molecule, n, was in the range of 8 to 16. On the basis of the force/distance curves, the elastic modulus, E, and yield strength, Y, of surface micelles are calculated. It is shown that in surfactant mixtures containing SDS the maximal repulsive force (the barrier F(bar)) at which the tip punctured the micelles, as well as the magnitudes of E and Y, attained the maximal values for C(12)TAB ( i.e., when the hydrocarbon chain lengths of two oppositely charged surfactants are the same). Obviously, it can be related to the highest density structure of these micelles. Note that the literature data for the surface micelles from pure C(n)TAB solutions demonstrate a monotonic dependence of F(bar), E, and Y on n in the range of n = 8-16, whereas the oppositely charged mixed surfactant systems yield much higher values of F(bar), E, and Y than does an equivalent chain length from the homologue series plots. The results obtained for mechanical characteristics of mixed micelles at the surface are compared with the results for the relaxation time, tau(2), that characterizes the lifetime (and therefore structure) of the bulk micelles. Both the dependence of F(bar), E, and Y on n for the surface mixed micelles and tau(2) on n for the bulk mixed micelles demonstrate a maximum at n = 12 for the C(n)TAB + SDS system. This correlation between properties of the surface and bulk micelles suggests that the mechanical properties of the surface micelles are largely determined by the interactions between surfactant molecules with surfactant-substrate interactions playing a secondary role.  相似文献   

5.
The computer aided analysis of the EPR spectra of radical surfactant probes inserted in cetyltrimethylammonium bromide micelles provided information on the kinetics of formation of micelle templated silico-aluminas (MTSA) at 343 K, obtained by means of silica and alumina alkaline solutions at different Si/Al ratios (from infinity to 4). Mainly two spectral components were analyzed and relatively quantified in the EPR spectra: (1) the micellar component, due to probes inserted in the surfactant aggregates, whose mobility decreases over the synthesis time, thus reporting on the progressive modification of the micelle structure and the solid condensation; (2) the interacting component, mainly arising from the electrostatic interactions between the surfactant heads and the charged surface sites. This last component increases its relative intensity over the synthesis time, informing about condensation and structuration of the silico-alumina at the micelle surface. X-ray diffraction (XRD), nitrogen sorption isotherms at 77 K, thermogravimetric analysis, TEM and chemical analysis were performed to characterize both as-synthesized and calcined MTSA materials. Nitrogen sorption isotherms allowed us to evaluate the pore diameter, the specific surface area and the pore volume. At Si/Al<15 a decrease in pore volume and specific surface area was interpreted as due to the contemporaneous presence of a hexagonal MTSA and an amorphous material, which was ascertained by means of XRD as the only present at Si/Al=4. The amorphous structure at Si/Al<15 used Na+ as contraions, whereas the surfactants are no more needed to neutralize the negatively charged groups at the solid surface. The hypothesis of a "break" at Si/Al=15 was supported by EPR: the interactions between the surfactant probe heads and the negatively charged surface groups are drastically reduced at Si/Al<15. On the contrary, at Si/Al>15, increasing amounts of alumina slow the kinetics of the synthesis but enhance electrostatic interactions between the surfactant heads and the negatively charged surface groups. Dilution of the synthesis mixture decreased the extent of the interactions, due to partial protonation of the silanol groups, and slowed the synthesis process.  相似文献   

6.
Ultraviolet spectrometric study of alizarin red S (ARS) showed the substantial change in dye spectra by cationic CTAB as compared to anionic SDS and nonionic TX-100 surfactant. High spectral change by CTAB confirms the anionic nature of ARS dye and thus ARS-CTAB complex formation takes place due to electrostatic force of attraction. A little spectral change by SDS is the result of similarly charged repulsive forces that overcome weak hydrophobic-hydrophobic interaction between dye and surfactant micelles. TX-100 exhibited moderate spectral effect responsive to weak hydrophobic-hydrophobic interaction alone. MEUF study of ARS dye justified the spectral changes and dye rejection percentage (R) decreases in the following order: cationic > nonionic > anionic surfactant. Permeate flux (J) slightly decreases in presence of CTAB and it remains virtually constant for both SDS and TX-100. Addition of copper salt (i.e., CuCl2) in dye-CTAB complex solution, favors rejection (%) removing dye and copper simultaneously via micellar enhanced ultrafiltration.  相似文献   

7.
The behavior of two charged polymer networks in a solution of an oppositely charged surfactant was studied. It was shown that such a system (depending on preset parameters) can exist in different modes: without micelles in both networks, with micelles in one of the network, and with micelles in both networks. The dependences of network dimensions and ion concentrations inside the networks on the surfactant concentration in the solution, the fraction of charged units in one of the networks, and the relative size of the system were obtained. It is possible to affect the state of one network by varying the parameters (e.g., the proportion of charged units) of the other network. Different network swelling scenarios depending on the relative size of the system and the fraction of charged network units were revealed.  相似文献   

8.
A Dobashi  M Hamada 《Electrophoresis》1999,20(13):2761-2765
Enantiomers of dansylated DL-amino acids were resolved by chiral copper (II)-N-n-dodecyl-L-proline (1) complexes incorporated in micelles of sodium dodecyl sulfate (SDS) in electrokinetic capillary chromatography (EKC). This resolution is caused by formation of diastereomeric ternary complexes consisting of chiral ligand 1, central copper (II) ion and enantiomeric amino acid derivatives in micellar phase. However, the resolution was not observed when SDS with an anionic polar head grop was replaced with dodecyl trimethylammonium brode (DTMAB) with a cationic polar head group. The ratio between copper (II) ion and 1 in the complex in either SDS or DTMAB was measured by UV-visible spectra, which respond to the d-d transition of copper (II). Mechanism of separation should be discussed in terms of effect of surfactant structures on constitution of copper (II) ion and 1 in the micellar phase and that of arene substituent structures linked to sulfonamide units in amino acid derivatives to be separated.  相似文献   

9.
The anionic surfactant sodium dodecyl sulfate (SDS) was used to induce the initial steps of the solubilization of liposomes. The structural transformations as well as the kinetics associated with this initial period were studied by means of time-resolved small-angle X-ray scattering (SAXS) using a synchrotron radiation source. Neutral and electrically charged (anionic and cationic) liposomes were used to investigate the effect of the electrostatic charges on the kinetics of these initial steps. The mechanism that induces the solubilization process consisted of adsorption of surfactant on the bilayers and desorption of mixed micelles from the liposomes surface to the aqueous medium. In all cases the time needed for desorption of the first mixed micelles was shorter than that for complete adsorption of the surfactant on the liposomes surface. The present work demonstrates that adsorption of the SDS molecules on negatively charged liposomes was slower and release of mixed micelles from the surface of these liposomes was faster than for neutral liposomes. In contrast, in the case of positively charged liposomes, the adsorption and release processes were, respectively, faster and slower than those for neutral vesicles.  相似文献   

10.
Surfactants such as Aerosol OT (AOT) are commonly used to stabilize and electrically charge nonpolar colloids in devices such as electronic ink displays. The electrical behavior of such devices is strongly influenced by the presence of charged inverse micelles, formed by excess surfactant that does not cover the particles. The presence of charged inverse micelles results in increased conductivity of the solution, affecting both the energy consumption of the device and its switching characteristics. In this work, we use transient current measurements to investigate the electrical properties of suspensions of the surfactant Aerosol OT in dodecane. No particles are added, to isolate the effect of excess surfactant. The measured currents upon application of a voltage step are found to be exponentially decaying, and can be described by an analytical model based on an equivalent electric circuit. This behavior is physically interpreted, first by the high generation rate of charged inverse micelles giving the suspension resistor like properties, and second by the buildup of layers of charged inverse micelles at both electrodes, acting as capacitors. The model explains the measurements over a large range of surfactant concentrations, applied voltages, and device thicknesses.  相似文献   

11.
Micellar-enhanced ultrafiltration (MEUF) process was explored for obtaining pure water from an aqueous solution containing small amount of trihalomethanes (THMs). A homologous series of polyethylene glycol alkylether was used as nonionic surfactant. To understand effects of membrane hydrophilicity on the performance of MEUF process, membranes for the ultrafiltration were prepared from polysulfone blends containing various amount of a hydrophilic copolymer, poly(1-vinylpyrrolidone-co-acrylonitrile) (P(VP-AN)). An increase in the permeate flux was observed with an increase of the membrane hydrophilicity. The performance of MEUF process in removing THM and surfactant was shown to depend on the membrane characteristics, surfactant characteristics, and operating pressure. The rejections of THM and surfactant were increased with increasing hydrophobicity of surfactant and hydrophilicity of membrane. The rejections of THM examined with hydrophilic membranes were increased with increasing operating pressure, while those examined with hydrophobic membranes were decreased with increasing operating pressure. THM included in water could be removed up to 99% via MEUF process. The performance of MEUF examined with hydrophilic membranes could be explained with the rejection of micelles containing THM, while that examined with hydrophobic membranes could be explained with hydrophobic interactions between surfactant and membrane materials.  相似文献   

12.
Zheng ZX  Wei Y  Lin JM 《Electrophoresis》2005,26(4-5):1007-1012
A ligand-exchange capillary electrophoresis was explored, with L-ornithine as the ligand and copper(II) as the central ion. Its applicability was demonstrated with underivatized and dansyl amino acids, a dipeptide, and drugs with amino alcohol structure. The enantioselectivity was found to be strongly dependent on pH and copper(II)-L-Orn complex concentration. Due to the adsorption of the positively charged species onto the capillary inner walls, the chiral separation selectivity is very high while the efficiency is relatively low. Permanent 1,3-propanediamine-coated capillaries show an improved separation efficiency and theoretical plate numbers increasing from 10(4) to 10(5). Similar phenomena were observed when sodium dodecyl sulfate (SDS) micelles were added to the copper(II) complex solution. The poor separation efficiency of chiral compounds in uncoated capillaries may result from the low rate of the ligand-exchange reactions, and the high enantioselectivity may derive from the complexing process in the adsorbed phase.  相似文献   

13.
Chelating aggregates consisting of Triton X100 host micelles and hydrophobic derivatives of PAN have been examined as suitable candidates for preconcentration and selective separation of transition metal ions through micellar-enhanced ultrafiltration. The effective accumulation in the surfactant-rich retentate of nickel(II), copper(II), cobalt(II), manganese(II) and zinc(II), present at trace levels in aqueous samples, has been achieved by operating at pH ca. 6 with a ligand having a binding constant to the host micelles higher than 2000 l./mol. The efficient separation of micelle-bound metal chelates from unreactive ions has been assessed, together with the feasibility of selective enrichment and purification of the investigated metal ions present in mixtures through a multistage process.  相似文献   

14.
Adsorption of nonionic surfactant micelles onto ultrafiltration (UF), membranes was studied. Two homologous series of nonionic surfactants, namely, Tritons (alkylphenol ethoxylates) and Neodols (alcohol ethoxylates), were used to characterize surface properties of two polymeric ultrafiltration membranes with 20,000 nominal cutoff. Particularly, a cellulose acetate and a polysulfone membrane were investigated. Static adsorption experiments were carried out using surfactant solutions at concentrations above their critical micelle concentration. The characterization of surface properties of UF membranes was based on the adsorption behavior of surfactant species. The adsorption extent on UF membranes was affected by the hydrophobicity-to-hydrophilicity ratio mainly determining the interactions developed at the membrane-surfactant species interface. Adsorption experimental data seem generally to fit the Langmuir isotherm model. Atomic force microscopy was used to examine the alteration of the top membrane surface morphology.  相似文献   

15.
Formation of copper(II) thiocyanato and cadminum(II) iodo complexes in micelles of poly(ethylene oxide) (PEO)-type nonionic surfactants with varying PEO chain lengths of 9.5 (Triton X-100), 30 (Triton X-305), and 40 (Triton X-405) has been studied by titration spectrophotometry and calorimetry at 298 K. In a given surfactant solution, all data obtained were analyzed by assuming formation of ternary complexes MX(n)Y(m)((2-n)+) (M = Cu(II),Cd(II); X = SCN(-), I(-); Y = surfactant), and the complexes thus form in aqueous phase (m = 0) or in micelles (m = 1). In the Cu(II)-SCN(-) system, spectrophotometric data obtained by varying concentrations of the surfactant can be explained well in terms of formation of Cu(NCS)(2)Y in micelles and Cu(NCS)(+) and Cu(NCS)(2) in an aqueous phase, and it turned out that formation constant of Cu(NCS)(2)Y increases with increasing PEO chain length. In the Cd(II)-I(-) system, the formation of CdI(3)Y(-) and CdI(4)Y(2-) is concluded in micelles, and that of CdI(+), CdI(3)(-), and CdI(4)(2-) in an aqueous phase. Interestingly, formation enthalpies of CdI(3)Y(-) and CdI(4)Y(2-) become significantly less negative with increasing PEO chain length. This suggests that transfer of the complexes from aqueous solution to a hydrophobic octylphenyl (OP) moiety in micelles is significantly more exothermic than that to a hydrophilic PEO one. Thermodynamic parameters of transfer of CdI(3)(-) and CdI(4)(2-) from aqueous solution to the OP and PEO moieties of micelles have been evaluated. Copyright 2000 Academic Press.  相似文献   

16.
A water-in-oil type emulsion containing oxine has been used for the discrimination of copper(II) ions and copper-humic complexes in aqueous solutions. A toluene solution containing oxine and nonionic surfactant (Span-80) was vigorously mixed with 1 mol/L HCl by ultrasonic irradiation. The resulting emulsion was added to water and dispersed by stirring as numerous small globules. Copper(II) ions were quantitatively permeated across the oil layer and incorporated in the tiny droplets of HCl, whereas copper-humic complexes remained in the sample solution. After collecting the dispersed emulsion globules, they were destroyed by heating to segregate the aqueous (HCl) and organic (toluene) phases. The copper in the aqueous phase was determined by graphite-furnace atomic absorption spectrometry (GFAAS). The analytical results agreed with those obtained by the adsorption method, where negatively charged humic complexes were selectively collected on a macroreticular anion exchanger Sephadex A-25 column. The conventional liquid-liquid extraction did not offer a chemical speciation because copper(II) ions and humic complexes were simultaneously extracted into the organic phase. The proposed emulsion method was successfully applied to the analysis of river water samples.  相似文献   

17.
The nonionic surfactant Tween80 is a commonly used excipient in drug formulations containing an active substance with low aqueous solubility. Model drug vehicles with varying charge density were obtained by mixing Tween80 (PS-80) with the cationic surfactant Tetradecyltrimethylammonium chloride (TTAC), thus forming mixed micelles. The micelles were mixed with the negatively charged polyelectrolyte mucin, which is a component in the protective mucus layer covering epithelial cell linings. Depending on the composition of the mixture, complex-formation could be followed by precipitation. Using X-ray diffraction, it was found that the precipitate contained a lamellar phase with properties sensitive to the proportion of PS-80. Higher amounts of PS-80 were found to oppose phase separation. Further analysis in the one-phase region, or alternatively of the supernatant of two-phase samples, by (1)H NMR, HPLC, and diffusion measurements with PGSE-NMR led to the conclusions that at low proportion of PS-80 aggregates composed of mixed (PS-80 and TTAC) micelles and mucin were formed, whereas increased concentrations of PS-80 favored the dissolution of the precipitate and limited the interactions between mixed micelles and the polymer.  相似文献   

18.
两性离子甜菜碱表面活性剂(SB3-12)胶束具有较好的生物相容性,由于相反电荷的极性头之间具有静电中和作用,胶束表面具有小的负电荷密度。当加入阴离子的十二烷基硫酸钠(SDS)以后,负离子SD-与SB3-12胶束极性区内层季铵正电荷的静电中和作用,能连续地调节胶束表面磺酸基的负电荷密度,这有利于对药物分子的选择性增溶和调节在生理条件下的药物的输送。等温滴定量热(ITC)研究发现SB3-12和SDS有强的协同效应,混合临界胶束浓度(CMC)和胶束化焓明显降低,并得到两者协同效应的弱静电作用机理。当模型药物分子芦丁(Rutin)与SB3-12/SDS混合胶束作用时,芦丁7位羟基的氢解离后的阴离子与SDS共同作用于SB3-12形成混合胶束。UV-Vis吸收光谱和~1H NMR谱研究发现,在SB3-12胶束中,芦丁分子的A环位于季铵阳离子附近,B环位于两个相反电荷之间的弱极性区域。在SDS胶束中,B环位于栅栏层,而A环和二糖暴露于水相侧。在混合胶束中,随着SDS摩尔分数增加,对A环的静电吸引变弱。离子表面活性剂对两性离子表面活性剂胶束表面电荷密度的调节作用,本质上是对胶束极性区域的物理及化学性质的微调,进而实现对药物的可控增溶。  相似文献   

19.
Surfactants have been used to enhance the removal of phenol from aqueous system; therefore, the interaction between surfactants and phenol is important for selection of the surfactant and understanding the process. In this work, sugar based surfactant, n-dodecyl-beta-D-maltoside (DM), was utilized to separate phenol from aqueous solution using ultrafiltration. 2-D NMR and Cryo-TEM techniques were employed to obtain information on the orientation of phenol molecules in the micellar phase and the shape transition of the micelles. The flux was found to decrease linearly with the solute concentration and the equilibrium constant was found to be constant. 2-D NMR spectra have shown that phenol molecules reside in the palisade layer of the DM micelles with the benzene ring interacting with the hydrocarbon chain of DM molecules, especially the first methylene group. Cryo-TEM results have shown the shape transition from spherical to worm-like due to the presence of phenol. The results will help understand the interaction between surfactants and phenol and the select the optimum surfactant reagents and operational conditions for micellar enhanced ultrafiltration process.  相似文献   

20.
For the first time, temperature-induced phase transitions upon heating and cooling an aqueous solution that contained oppositely charged polyelectrolyte and surfactant mixtures was observed. The phase transition from micelles to vesicles, then to the coexistence of vesicles and superstructures that have the morphology of melon seeds, and finally to precipitates was determined by means of turbidity measurements and transmission electron microscopy images. These phase transitions were shown to be reversible and reproducible after several heating and cooling cycles were performed on the same sample. The novel observations for the temperature-induced phase transition from primary aggregates, such as micelles, to superstructures (i.e., vesicles) should provide new understanding for surfactant sciences, and in particular for self-assembled amphiphilic systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号