首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider the vibronic coupling effects involving cationic states with degenerate components that can be represented as charge localized at either end of the short cumulene molecules allene and pentatetraene. Our aim is to simulate dynamically the charge transfer process when one component is artificially depopulated. We model the Jahn-Teller vibronic interaction within these states as well as their pseudo-Jahn-Teller coupling with some neighboring states. For the manifold of these states, we have calculated cross sections of the ab initio adiabatic potential energy surfaces along all nuclear degrees of freedom, including points at large distances from the equilibrium to increase the physical significance of our model. Ab initio calculations for the cationic states of allene and pentatetraene were based on the fourth-order M?ller-Plesset method and the outer valence Green's function method. In some cases we had to go beyond this method and use the more involved third-order algebraic diagrammatic construction method to include intersections with satellite states. The parameters for a five-state, all-mode diabatic vibronic coupling model Hamiltonian were least-square fitted to these potentials. The coupling parameters for the diabatic model Hamiltonian are such that, in comparison to allene, an enhanced preference for indirect charge transfer is predicted for pentatetraene.  相似文献   

2.
Multiconfiguration ab initio methods have been employed to study the effects of Jahn-Teller (JT) and spin-orbit (SO) coupling in the transition-metal trifluorides TiF(3), CrF(3), and NiF(3), which possess spatially doubly degenerate excited states ((M)E) of even spin multiplicities (M = 2 or 4). The ground states of TiF(3), CrF(3), and NiF(3) are nondegenerate and exhibit minima of D(3h) symmetry. Potential-energy surfaces of spatially degenerate excited states have been calculated using the state-averaged complete-active-space self-consistent-field method. SO coupling is described by the matrix elements of the Breit-Pauli operator. Linear and higher order JT coupling constants for the JT-active bending and stretching modes as well as SO-coupling constants have been determined. Vibronic spectra of JT-active excited electronic states have been calculated, using JT Hamiltonians for trigonal systems with inclusion of SO coupling. The effect of higher order (up to sixth order) JT couplings on the vibronic spectra has been investigated for selected electronic states and vibrational modes with particularly strong JT couplings. While the weak SO couplings in TiF(3) and CrF(3) are almost completely quenched by the strong JT couplings, the stronger SO coupling in NiF(3) is only partially quenched by JT coupling.  相似文献   

3.
Motivated by the recent discovery of new diffuse interstellar bands and results from laboratory experiments, ab initio quantum chemistry calculations are carried out for the lowest six electronic states of naphthalene and anthracene radical cations. The calculated adiabatic electronic energies are utilized to construct suitable diabatic electronic Hamiltonians in order to perform nuclear dynamics studies in Part II. Complex entanglement of the electronic states is established for both the radical cations and the coupling surfaces among them are also derived in accordance with the symmetry selection rules. Critical examination of the coupling parameters of the Hamiltonian suggests that 29 (out of 48) and 31 (out of 66) vibrational modes are relevant in the nuclear dynamics in the six lowest electronic states of naphthalene and anthracene radical cations, respectively.  相似文献   

4.
We report magnetic and magnetic circular dichroism investigations of a binuclear Co(II) compound. The Hamiltonian of the system involves an isotropic exchange interaction dealing with the real spins of cobalt(II) ions, spin-orbit coupling, and a low-symmetry crystal field acting within the (4)T(1g) ground manifold of each cobalt ion. It is shown that spin-orbit coupling between this ground term and the low-lying excited ones can be taken into consideration as an effective g factor in the Zeeman part of the Hamiltonian. The value of this g factor is estimated for the averaged experimental values of Racah and cubic ligand field parameters for high-spin cobalt(II). The treatment of the Hamiltonian is performed with the use of a irreducible tensor operator technique. The results of the calculation are in good agreement with experimental observations. Both a large effective g factor for the ground state and a large temperature-independent part of the magnetic susceptibility arise because of a strong orbital contribution to the magnetic behavior of the Co(II) dimer.  相似文献   

5.
The use of generalized internal coordinates for the variational calculation of excited vibrational states of symmetrical bent triatomic molecules is considered with applications to the SO2, O3, NO2, and H2O molecules. These coordinates depend on two external parameters which can be properly optimized. We propose a simple analytical method to determine the optimal internal coordinates for this kind of molecules based on the minimization with respect to the external parameters of the zero-point energy, assuming only quadratic terms in the Hamiltonian and no quadratic coupling between the optimal coordinates. The optimal values of the parameters thus obtained are shown to agree quite well with those that minimize the sum of a number of unconverged energies of the lowest vibrational states, computed variationally using a small basis function set. The unconverged variational calculation uses a basis set consisting of the eigenfunctions of the uncoupled anharmonic internal coordinate Hamiltonian. Variational calculations of the excited vibrational states for the four molecules considered carried out with an increasing number of basis functions, also evidence the excellent convergence properties of the optimal internal coordinates versus those provided by other normal and local coordinate systems.  相似文献   

6.
The pure rotational spectra of 41 isotopic species of PbSe and PbTe have been measured in their X 1Sigma+ electronic state with a resonator pulsed-jet Fourier transform microwave spectrometer. The molecules were prepared by laser ablation of suitable target rods and stabilised in supersonic jets of noble gas. Global multi-isotopologue analyses yielded spectroscopic Dunham parameters Y01, Y11, Y21, Y31, Y02, and Y12 for both species, as well as effective Born-Oppenheimer breakdown (BOB) coefficients delta01 for Pb, Se and Te. Unusual large values of the BOB parameters for Pb have been rationalized in terms of finite nuclear size (field shift) effect. A direct fit of the same data sets to an appropriate radial Hamiltonian yielded analytic potential energy functions and BOB radial functions for the X 1Sigma+ electronic state of both PbSe and PbTe. Additionally, the magnetic hyperfine interactions produced by the uneven mass number A nuclei 207Pb, 77Se, 123Te, and 125Te were observed, yielding first determinations of the corresponding nuclear spin-rotation coupling constants.  相似文献   

7.
In this report we introduce an iterative procedure for constructing a quasidiabatic Hamiltonian representing N(state)-coupled electronic states in the vicinity of an arbitrary point in N(int)-dimensional nuclear coordinate space. The Hamiltonian, which is designed to compute vibronic spectra employing the multimode vibronic coupling approximation, includes all linear terms which are determined exactly using analytic gradient techniques. In addition, all [N(state)][N(int)] quadratic terms, where [n]=n(n+1)/2, are determined from energy gradient and derivative coupling information obtained from reliable multireference configuration interaction wave functions. The use of energy gradient and derivative coupling information enables the large number of second order parameters to be determined employing ab initio data computed at a limited number of points (N(int) being minimal) and assures a maximal degree of quasidiabaticity. Numerical examples are given in which quasidiabatic Hamiltonians centered around three points on the C(3)H(3)N(2) potential energy surface (the minimum energy point on the ground state surface and the minimum energy points on the two- and three-state seams of conical intersection) were computed and compared. A method to modify the conical intersection based Hamiltonians to better describe the region of the ground state minimum is introduced, yielding improved agreement with ab initio results, particularly in the case of the Hamiltonian defined at the two-state minimum energy crossing.  相似文献   

8.
The qualitative rules for the existence of high‐spin ground states in extended systems and molecular crystals are examined here on a firmer theoretical footing. Extended systems have been categorized into three groups, namely, type I, type II, and type III, depending on the type of bonding interactions. The general form of the spin Hamiltonian operators have been written down. The active spaces have been restricted to the minimum size for each of these three types of spin systems. The zeroth‐order state vectors and the Hartree–Fock ground‐state energies have been identified for unit species of each type. The extended system Hamiltonian operators are further truncated in such a way that only the nearest‐neighbor interactions are retained. Expressions have been derived for the energy gap from a molecular orbital approach. The relatively small effects of electron correlation on the energy gaps have been estimated for the type I systems, which belong to the systems of solid‐state physics. In particular, it has been shown that for the type I systems the singlet–triplet gap, and hence the ferromagnetic coupling constant, primarily depends upon the difference of one‐electron kinetic energies and not on the two‐electron exchange integrals. This result agrees with the concept of kinetic exchange that was introduced in the context of a resonating valence‐bond formalism. Type II systems are exemplified by extended systems that can be prepared from conjugated molecules while organic molecular crystals form examples of type III species. For these systems, however, the Coulomb exchange interaction has been shown to dominate the energy gap. A quick review of the Heisenberg spin Hamiltonian for the H2 molecule is sufficient to point out that the sign of the calculated ferromagnetic coupling constant depends on the method of calculation, the nature of the basis set, and the bond length. This is amply supported by ab initio calculations on this species. Numerical data have also been obtained from computations on m‐phenylene‐coupled nitroxy radicals and stacks of α‐nitronyl nitroxide, but these calculations have been based on a semiempirical quantum chemical methodology (INDO) since some of the species involved are exceedingly large. Computed energy gaps are in good agreement with experimental and other theoretical (AM1, PM3) results. Nevertheless, for the dimer, trimer, tetramer, and pentamer of the type II specimen, the important π orbitals are far from being degenerate. The quantitative results clearly deviate from the criterion of degeneracy that was suggested from qualitative theories for the existence of a high‐spin ground state. Therefore, the criteria for the existence of high spins have been reformulated in terms of the monomer orbitals. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 79: 308–324, 2000  相似文献   

9.
A CDM/ EPR program has been developed using Visual Basic 6. 0. The spin-spin(SS)and spin-otherorbit(SOO)interactions omitted in published works have also been included in the Hamiltonian. The CDM/EPR program can study not only the EPR parameters but also the CF energy levels and wavefunctions for 4A2 (3d3)states ions in crystals. Utilizing the CDM/ EPR program,the EPR parameters and fine spectra for Ruby and Emerald have been investigated. The theoretical results are in good agreement with the experimental findings. The contributions to the EPR parameters and fine spectra arising from SS and SOO interactions have been studied. The investigation shows:① The EPR parameters are mainly induced by SO coupling interaction;② The contribution to the zerofield-splitting(ZFS)arising from SS interaction is appreciable and cannot be omitted,whereas the contributions to the ZFS parameter D arising from SOO interaction are smaller;③ The contribution to the Zeeman g-factors and spectra arising from SS and SOO interactions is slight.  相似文献   

10.
The effective vibronic Hamiltonian for a linear tetra-atomic molecule in a Pi state has been investigated. In addition to the usual vibrational and Renner-Teller coupling terms, the bending mode anharmonicity, spin-orbit coupling, and Fermi resonance interactions have been added to the model. Terms in the Hamiltonian up to the fourth order are given explicitly for molecules of C(infinityupsilon) symmetry and simplifications for symmetric D(infinityh) molecules are discussed. The matrix elements for the HCCS free radical have been obtained and are used to analyze the observed ground-state levels of HCCS and DCCS in a companion paper. The Sears resonance vibronic interaction that couples levels with the selection rules DeltaK=+/-1, DeltaSigma=-/+1, and DeltaP=0 has also been studied and the matrix elements derived. The determinable combinations of signs for the major parameters in the model are discussed.  相似文献   

11.
We investigate the laser induced recombination of electrons to excited states of hydrogen-like ions. The time integration and averaging over incidente energies are performed analytically for a model Hamiltonian, which takes into account the degeneracy of the states and possible resonant transitions to lower lying states. The range of validity of the model assumptions is determined by comparison with numerical calculations using the exact Hamiltonian. For an arrangement of merged laser, ion and electron beams we calculated the recombination yields as a function of the laser pulse energy to then=5 to 20 states of hydrogen like ions with nuclear charges fromZ=1 to 4.  相似文献   

12.
Energy-consistent two-component semi-local pseudopotentials for the superheavy elements with atomic numbers 111-118 have been adjusted to fully relativistic multi-configuration Dirac-Hartree-Fock calculations based on the Dirac-Coulomb Hamiltonian, including perturbative corrections for the frequency-dependent Breit interaction in the Coulomb gauge and lowest-order quantum electrodynamic effects. The pseudopotential core includes 92 electrons corresponding to the configuration [Xe]4f(14)5d(10)5f(14). The parameters for the elements 111-118 were fitted by two-component multi-configuration Hartree-Fock calculations in the intermediate coupling scheme to the total energies of 267 up to 797 J levels arising from 31 up to 62 nonrelativistic configurations, including also anionic and highly ionized states, with mean absolute errors clearly below 0.02 eV for averages corresponding to nonrelativistic configurations. Primitive basis sets for one- and two-component pseudopotential calculations have been optimized for the ground and excited states and exhibit finite basis set errors with respect to the finite-difference Hartree-Fock limit below 0.01 and 0.02 eV, respectively. General contraction schemes have been applied to obtain valence basis sets of polarized valence double- to quadruple-zeta quality. Results of atomic test calculations in the intermediate coupling scheme at the Fock-space coupled-cluster level are in good agreement with those of corresponding fully relativistic all-electron calculations based on the Dirac-Coulomb-Breit Hamiltonian. The results demonstrate besides the well-known need of a relativistic treatment at the Dirac-Coulomb level also the necessity to include higher-order corrections for the superheavy elements.  相似文献   

13.
Potential energy curves (PECs) for the low-lying states of the lithium chloride molecule (LiCl) have been calculated using the internally contracted multireference single- and double-excitation configuration interaction (MRSDCI) method with the aug-cc-PVnZ (AVnZ) and aug-cc-PCVnZ (ACVnZ) basis sets, where n = T, Q, and 5. First, we calculate PECs for 7 spin-orbit (SO)-free Λ-S states, X(1)Σ(+), A(1)Σ(+), (3)Σ(+), (1)Π, and (3)Π, and then obtain PECs for 13 SO Ω states, X0(+), A0(+), B0(+), 0(-)(I), 0(-)(II), 1(I), 1(II), 1(III), and 2, by diagonalizing the matrix of the electronic Hamiltonian plus the Breit-Pauli SO Hamiltonian. The MRSDCI calculations not including core orbital correlation through the single and double excitations are also performed with the AV5Z and ACV5Z basis sets. The Davidson corrections (Q0) are added to both the Λ-S and Ω state energies. Vibrational eigenstates for the obtained X(1)Σ(+) and X0(+) PECs are calculated by solving the time-independent Schro?dinger equation with the grid method. Thus, the effects of basis set, core orbital correlation, and the Davidson correction on the X(1)Σ(+) and X0(+) PECs of LiCl are investigated by comparing the spectroscopic constants calculated from the PECs with one another and with experiment. It is confirmed that to accurately predict the spectroscopic constants we need to include core-electron correlation in the CI expansion and use the basis sets designed to describe core-valence correlation, i.e., ACVnZ. The SO PECs presented in this paper will be of help in the future study of diatomic alkali halide dynamics.  相似文献   

14.
Magnetic anisotropy in cyanide-bridged single-molecule magnets (SMMs) with Fe(III)-CN-M(II) (M = Cu, Ni) exchange-coupled pairs was analyzed using a density functional theory (DFT)-based ligand field model. A pronounced magnetic anisotropy due to exchange was found for linear Fe(III)-CN-M(II) units with fourfold symmetry. This results from spin-orbit coupling of the [Fe(III)(CN)6](3-) unit and was found to be enhanced by a tetragonal field, leading to a (2)E g ground state for Fe(III). In contrast, a trigonal field (e.g., due to tau 2g Jahn-Teller angular distortions) led to a reduction of the magnetic anisotropy. A large enhancement of the anisotropy was found for the Fe(III)-CN-Ni(II) exchange pair if anisotropic exchange combined with a negative zero-field splitting energy of the S = 1 ground state of Ni(II) in tetragonally compressed octahedra, while cancellation of the two anisotropic contributions was predicted for tetragonal elongations. A recently developed DFT approach to Jahn-Teller activity in low-spin hexacyanometalates was used to address the influence of dynamic Jahn-Teller coupling on the magnetic anisotropy. Spin Hamiltonian parameters derived for linear Fe-M subunits were combined using a vector-coupling scheme to yield the spin Hamiltonian for the entire spin cluster. The magnetic properties of published oligonuclear transition-metal complexes with ferromagnetic ground states are discussed qualitatively, and predictive concepts for a systematic search of cyanide-based SMM materials are presented.  相似文献   

15.
We present a model intended for rapid sampling of ground and excited state potential energy surfaces for first-row transition metal active sites. The method is computationally inexpensive and is suited for dynamics simulations where (1) adiabatic states are required "on-the-fly" and (2) the primary source of the electronic coupling between the diabatic states is the perturbative spin-orbit interaction among the 3d electrons. The model Hamiltonian we develop is a variant of the Anderson impurity model and achieves efficiency through a physically motivated basis set reduction based on the large value of the d-d Coulomb interaction U(d) and a Lanczos matrix diagonalization routine to solve for eigenvalues. The model parameters are constrained by fits to the partial density of states obtained from ab initio density functional theory calculations. For a particular application of our model we focus on electron transfer occurring between cobalt ions solvated by ammonium, incorporating configuration interaction between multiplet states for both metal ions. We demonstrate the capability of the method to efficiently calculate adiabatic potential energy surfaces and the electronic coupling factor we have calculated compares well to previous calculations and experiment. (  相似文献   

16.
The conventional vibration-rotation Hamiltonian for an asymmetric-top molecule is rewritten by expanding the elements of the inverse inertial tensor about the equilibrium molecular geometry. The approach allows the identification of terms in the Hamiltonian that couple states differing by two, three, or four vibrational quanta and hence the calculation of dimensioned Coriolis xi coupling coefficients for interacting fundamental, overtone, and combination levels. The matrix elements that result from the application of the expanded Hamiltonian depend upon the harmonic vibrational wave numbers, equilibrium moments of inertia, Coriolis zeta parameters, and the derivatives of the elements of the inertial tensor matrix with respect to each of the normal coordinates. The Coriolis coupling coefficients may be calculated through evaluation of the summations that result from the appropriate terms. The validity of the approach is demonstrated through the calculation of coupling coefficients for interacting levels in formaldehyde and ketene. The uncertainty in the calculated values of the coupling coefficients is typically better than +/-6%, although the values calculated for interactions that involve low-frequency vibrational modes are less reliable. Comparisons are made between the calculated values and experimental results.  相似文献   

17.
An ab initio electronic wave-packet dynamics coupled with the simultaneous classical dynamics of nuclear motions in a molecule is studied. We first survey the dynamical equations of motion for the individual components. Reflecting the nonadiabatic dynamics that electrons can respond to nuclear motions only with a finite speed, the equations of motion for nuclei include a force arising from the kinematic (nuclear momentum) coupling from electron cloud. To materialize these quantum effects in the actual ab initio calculations, we study practical implementation of relevant electronic matrix elements that are related to the derivatives with respect to the nuclear coordinates. Applications of the present scheme are performed in terms of the configuration state functions (CSF) using the canonical molecular orbitals as basis functions without transformation to particular diabatic basis. In the CSF representation, the nonadiabatic interaction due to the kinematic coupling is anticipated to be rather small, and instead it should be well taken into account through the off-diagonal elements of the electronic Hamiltonian matrix. Therefore it is expected that the nonadiabatic dynamics based on this CSF basis neglecting the kinematic coupling may work. To verify this anticipation and to quantify the actual effects of the kinematic coupling, we compare the dynamics with and without the kinematic-coupling terms using the same CSF set. Applications up to the fifth electronically excited states in a nonadiabatic collision between H(2) and B(+) shows that the overall behaviors of these two calculations are surprisingly similar to each other in an average sense except for a fast fluctuation reflecting the electronic time scale. However, at the same time, qualitative differences in the collision events are sometimes observed. Therefore it turns out after all that the kinematic-coupling terms cannot be neglected in the CSF-basis representation. The present applications also demonstrate that the nonadiabatic electronic wave-packet dynamics within ab initio quantum chemical calculation is feasible.  相似文献   

18.
We investigate the vibronic and spin-orbit (SO) coupling effects in the state-selected dynamics of the title reaction with the aid of a time-dependent wave packet approach. The ab initio potential energy surfaces of Capecchi and Werner [Science 296, 715 (2002)] have been employed for this purpose. Collinear approach of the Cl((2)P) atom to the H(2) molecule splits the degeneracy of the (2)P state and gives rise to (2)Sigma and (2)Pi electronic states. These two surfaces form a conical intersection at this geometry. These states transform as 1 (2)A('), 1 (2)A("), and 2 (2)A('), respectively, at the nonlinear configurations of the nuclei. In addition, the SO interaction due to Cl atom further splits these states into (2)Sigma(1/2), (2)Pi(3/2), and (2)Pi(1/2) components at the linear geometry. The ground-state reagent Cl((2)P(3/2))+H(2) correlates with (2)Sigma(1/2) and (2)Pi(3/2), where as the SO excited reagent Cl(*)((2)P(1/2))+H(2) correlates with (2)Pi(1/2) at the linear geometry. In order to elucidate the impact of the vibronic and SO coupling effects on the initial state-selected reactivity of these electronic states we carry out quantum scattering calculations based on a flux operator formalism and a time-dependent wave packet approach. In this work, total reaction probabilities and the time dependence of electronic population of the system by initiating the reaction on each of the above electronic states are presented. The role of conical intersection alone on the reaction dynamics is investigated with a coupled two-state model and for the total angular momentum J=0 (neglecting the electronic orbital angular momentum) both in a diabatic as well as in the adiabatic electronic representation. The SO interaction is then included and the dynamics is studied with a coupled three-state model comprising six diabatic surfaces for the total angular momentum J=0.5 neglecting the Coriolis Coupling terms of the Hamiltonian. Companion calculations are carried out for the uncoupled adiabatic and diabatic surfaces in order to explicitly reveal the impact of two different surface coupling mechanisms in the dynamics of this prototypical reaction.  相似文献   

19.
The concurrence of the group of symmetry of the periodic system of elements with the group of dynamical symmetry of a hydrogenlike atom is employed in the theoretical investigation of atoms. The character of the degeneracy of the eigenvalues of a hydrogenlike atom Hamiltonian, without changing its eigenfunctions, was changed by introducing into this Hamiltonian a term which violates the symmetry in relation to transformations from the subgroup O(4) of the group SO(4, 2). In consequence, it was realized that such “reorganization” of the states of a hydrogenlike atom, which form a representation of the group SO(4, 2), effects the splitting of this representation into finite‐dimensional multiplets, first of which are in full agreement with the experimentally observable composition of electron shells of atoms, and retains the physical meaning of quantum numbers that define electron states. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 72: 499–508, 1999  相似文献   

20.
The ability to calculate directly bonded X-H nuclear spin coupling constants from molecular parameters obtained from the extended Hückel model has been studied as a function of the following calculational details: (1) the atomic orbital basis set; (2) the off-diagonal Hamiltonian matrix element approximation; and (3) charge iteration. It has been found that although variations such as these have a significant effect on the magnitudes of the observed coupling constants, none is capable of fitting the experimentally observed trends in X-H coupling constants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号