首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Eleven laboratory-evolved polyhydroxyalkanoate (PHA) synthases which originated from Pseudomonas sp. 61-3 enzyme (PhaC1(Ps)), together with the wild-type enzyme, were applied for PHA synthesis from fructose using Ralstonia eutropha PHB(-)4 as a host strain. The evolved PhaC1(Ps) mutants had amino acid substitution(s) at position 325 and/or position 481. In these mutants, serine-325 (S325) was replaced by cysteine (C) or threonine (T), while glutamine-481 (Q481) was replaced by lysine (K), methionine (M) or arginine (R). All recombinant strains harboring the genes of the evolved PhaC1(Ps) mutants produced a significantly increased amount of PHA (55-68 wt.-%) compared with the one harboring the wild-type gene (49 wt.-%). Particularly, those evolved PhaC1(Ps) mutants having multiple amino acid substitutions showed higher activities for PHA synthesis. Characterization of the PHA by NMR spectroscopy revealed that they were copolymers consisting of (R)-3-hydroxybutyrate (98-99 mol-%) and medium-chain-length comonomers (1-2 mol-%). This study also confirmed that amino acid substitution at position 481 in PhaC1(Ps) led to an increasing molecular weight of PHA. The number-average molecular weight (Mn) of PHA (Mn = 240,000) synthesized by the evolved PhaC1(Ps) (Q481K) mutant was 4.6-fold greater than that (Mn = 52,000) synthesized by the wild-type enzyme.  相似文献   

2.
Type I polyhydroxyalkanoate (PHA) synthases, as represented by Ralstonia eutropha enzyme (PhaC(Re)), have narrow substrate specificity toward (R)-3-hydroxyacyl-coenzyme A with acyl chain length of C3-C5 to yield PHA polyesters. In this study, saturation point mutagenesis of a highly conserved alanine at position 510 (A510) in PhaC(Re) was carried out to investigate the effects on the polymerization activity and the substrate specificity for in vivo PHA biosynthesis in bacterial cells. A series of saturation mutants were first applied for poly[(R)-3-hydroxybutyrate] homopolymer synthesis in Escherichia coli and R. eutropha PHB(-)4 (PHA negative mutant) cells to assess the polymerization activity. All mutants showed quantitatively similar polymerization activities when R. eutropha PHB(-)4 was used for assay, whereas several mutants such as A510P showed low activities in E. coli. Further analysis has revealed that majority of mutants synthesize polyesters with higher molecular weights than the wild-type. In particular, substitution by acidic amino acids, A510D(E), led to remarkable increases in molecular weights. Subsequently, PHA copolymer synthesis from dodecanoate (C12 fatty acid) was examined. The copolymer compositions were varied depending on the mutants used. Significant increased fractions of long monomer units (C6 and C8) in PHA copolymers were observed for three mutants [A510M(Q,C)]. From these results, the mutations at this potion are beneficial to change the molecular weight of polyesters and the substrate specificity of PhaC(Re). Molecular weight distributions of PHA polymers synthesized by the wild-type enzyme (PhaC(Re)) and its mutants.  相似文献   

3.
Pseudomonas putida KT2442 could accumulate medium-chain-length poly(hydroxyalkanoate)s (PHA) consisting of 3-hydroxyhexanoate, 3-hydroxyoctanoate, 3-hydroxydecanoate, and 3-hydroxydodecanoate from a wide range of carbon sources. In this study, the PHA synthase pha operon (phaC1-phaZ-phaC2) was knocked out and the vgb gene encoding vitreoscilla hemoglobin protein (VHb), which could enhance oxygen uptake rate especially at low oxygen concentration, was integrated into the P. putida KT2442 genome to replace the deleted fragment. The resulting mutant P. putida KTOY01 or gene-replaced mutant KTOY02 was used as the host to study PHA synthase properties and PHA production. Different PHA polymerase (PhaC) genes, phaC(Re) from Rastonia eutropha H16, phaC(Ac) from Aeromonas cavie, and phaC2(Ps) from Pseudomonas stutzeri 1317, were expressed in the mutant strains to test the PhaC enzyme substrate specificity. The result showed P. putida KTOY01 or KTOY02 could provide not only mcl PHA monomers but also 3-hydroxybutyrate from fatty acids, which may allow the production of copolyesters poly(3HB-co-mcl 3HA). Plasmid pCJY10 containing phaC2(Ps), phbA, and phbB genes encoding PHA polymerase, beta-ketothiolase, and acetoacetyl-CoA reductase, respectively, were transformed into P. putida KTOY01 and KTOY02. Shake-flask culture showed P. putida KTOY01 or KTOY02 (pCJY10) could accumulate poly(3HB-co-mcl 3HA) from glucose. The above result showed pha operon knockout mutant of P. putida KT2442 was a very useful host of great potential not only for studying PhaC synthase, but also for microbial production of copolyesters poly(3HB-co-mcl 3HA), which is very difficult to obtain.  相似文献   

4.
A new strategy for bacterial polyhydroxyalkanoate (PHA) production by recombinant Ralstonia eutropha PHB(-)4 harboring mutated PHA synthase genes (phaC(Ac)) from Aeromona caviae was investigated. The strain harboring wild-type phaC(Ac) gene produced a PHA copolymer consisting of (R)-3-hydroxybutyrate and (R)-3-hydroxyhexanoate [P(3HB-co-3HHx)] with 3.5 mol-% of 3HHx fraction from soybean oil. When the mutants of phaC(Ac) gene were applied to this production system, 3HHx fraction in copolymers was varied in the range of 0-5.1 mol-%. Thus, the regulation of PHA copolymer compositions has been achieved by the use of mutated PHA synthase genes.  相似文献   

5.
Three different microbial wild-type strains are compared with respect to their potential as industrial scale polyhydroxyalkanoate (PHA) producers from the feed stock whey lactose. The halophilic archaeon Haloferax mediterranei as well as two eubacterial strains (Pseudomonas hydrogenovora and Hydrogenophaga pseudoflava) are investigated. H. mediterranei accumulated 50 wt.-% of poly-3-(hydroxybutyrate-co-8%-hydroxyvalerate) from hydrolyzed whey without addition of 3-hydroxyvalerate (3HV) precursors (specific productivity q(p): 9.1 mg x g(-1) x h(-1)). Using P. hydrogenovora, the final percentage of poly-3-hydroxybutyrate (PHB) amounted to 12 wt.-% (q(p): 2.9 mg x g(-1) x h(-1)). With H. pseudoflava, it was possible to reach 40 wt.-% P-3(HB-co-5%-HV) on non-hydrolyzed whey lactose plus addition of valeric acid as 3HV precursor (q(p): 12.5 mg x g(-1) x h(-1)). A detailed characterization of the isolated biopolyesters and an evaluation with regard to the economic feasibility completes the study.  相似文献   

6.
A series of P(3HB-co-3MP)s with different 3MP unit content was biosynthesized by the fermentation of W. eutropha in a medium containing sodium gluconate and DTDP as carbon sources at different pH conditions ranging from pH 6.0 to 8.0. The P(3HB-co-3MP) samples were fractioned using the solvent/nonsolvent mixed solvent chloroform/heptane and the comonomer unit composition was investigated. It was found that W. eutropha produces P(3HB-co-3MP)s with extremely different 3MP unit content ranging from 3.6 to 70.0 mol-%, depending on the pH value of the fermentation medium. The copolyester samples produced in mild basic medium have a considerably narrower compositional distribution than the samples from acidic medium. The highest polymer yield was obtained at pH 8.0.DSC diagram for P(3HB-co-3MP)s biosynthesized in different pH medium. [graph: see text] DSC diagram for P(3HB-co-3MP)s biosynthesized in different pH medium.  相似文献   

7.
Polyhydroxyalkanoate (PHA) synthase (PhaC) from Wautersia eutropha was expressed in a wide range of production level in Escherichia coli XL1-Blue cells and its effects on PhaC activity, poly[(R)-3-hydroxybutyrate] [P(3HB)] production and its molecular weights were investigated. The production level of PhaC was controlled both by the amount of chemical inducer (isopropyl-β-d-thiogalactopyranoside, IPTG) added into the medium and the use of different copy number of plasmids. In a flask experiment, as PhaC production level in the cells increased, the PhaC activity also increased in the range of low PhaC concentration. However, PhaC activity did not further increase in the range of high PhaC concentration, probably due to the formation of inclusion body in the cells. The molecular weight of P(3HB) was found to decrease with increasing PhaC activity. This trend was also verified in high cell density cultivation using 10-l jar fermentor. Furthermore, we demonstrated that the use of low copy number plasmid and appropriate induction of PhaC expression were effective in achieving both high productivity and high molecular weight of P(3HB).  相似文献   

8.
Modification of the type I polyhydroxyalkanoate synthase of Ralstonia eutropha (PhaC(Re)) was performed through systematic in vitro evolution in order to obtain improved PhaC(Re) having an enhanced activity of poly(3-hydroxybutyrate) (PHB) synthesis in recombinant Escherichia coli. For the first time, a beneficial G4D N-terminal mutation important for the enhancement of both PHB content in dry cells and PhaC(Re) level in vivo was identified. Site-directed saturation mutagenesis at the G4 position enabled us to identify other mutations conferring similar enhanced characteristics. In addition, the PHB homopolymer synthesized by most G4X single mutants also had higher molecular weights than that of the wild-type. In vitro enzymatic assays of purified G4D mutant PhaC(Re) revealed that the mutant enzyme exhibited slightly lower activity and reaction efficiency compared to the wild-type enzyme. [diagram in text].  相似文献   

9.
Polyhydroxyalkanoate (PHA) copolymers consisting of (R)-3-hydroxybutyrate (3HB) and medium-chain-length (R)-3-hydroxyalkanoate (3HA), P(3HB-co-3HA), are usually solved in chloroform. However, we found that some of the P(3HB-co-3HA) aged for more than 1 month under ambient conditions were not solved in chloroform, but instead swelled when the 3HA fraction was over 14 mol%. On the basis of differential scanning calorimetry and wide-angle x-ray diffraction analyses, we predicted that swellable P(3HB-co-3HA) contained numerous P(3HB) microcrystals, which may form physical crosslinks between adjacent PHA polymer chains.  相似文献   

10.
Aeromonas hydrophila 4AK4 was able to synthesize copolyesters consisting of 3-hydroxybutyrate (3HB) and about 15 mol-% 3-hydroxyhexanoate (3HHx) (PHBHHx) when grown in long chain fatty acids such as dodecanoate regardless of growth conditions. To regulate the unit fraction in PHBHHx, phbA and phbB genes encoding beta-ketothiolase and acetoacetyl-CoA reductase in Ralstonia eutropha, were introduced into A. hydrophila 4AK4. When gluconate was used as cosubstrate of dodecanoate, the recombinant produced PHBHHx containing 3-12 mol-% 3HHx, depending on the gluconate concentration in media. Vitreoscilla hemoglobin gene, vgb, was also introduced into the above recombinant, resulting in improved PHBHHx content from 38 to 48 wt.-% in shake flask study. Fermentor studies also showed that increased gluconate concentration in medium containing dodecanoate promoted the recombinant strain harboring phbA and phbB genes to incorporate more 3HB unit into PHBHHx, resulting in reduced 3HHx fraction. Recombinant A. hydrophila harboring phbA, phbB and vgb genes demonstrated better PHBHHx productivity and higher conversion efficiency from dodecanoate to PHBHHx than those of the recombinant without vgb in fermentation study. Combined with the robust growth property and simple growth requirement, A. hydrophila 4AK4 appeared to be a useful organism for metabolic engineering.  相似文献   

11.
Summary : Haloferax mediterranei was investigated for the production of two different high-performance polyhydroxyalkanoates (PHAs). A copolyester containing 6 mol-% 3-hydroxyvalerate (3HV) was produced from whey sugars as sole carbon source. The maximum specific growth rate (µmax.) and the maximum specific PHA production rate (qp max.) were determined with 0.10 1/h and 0.15 1/h, respectively. The cells contained 72.8 wt.-% of P-(3HB-co-6%-3HV) which featured low melting points between 150 and 160 °C and narrow molecular mass distribution (polydispersity PDI = 1.5). Further, a PHA terpolyester with an increased 3HV fraction as well as 4-hydroxybutyrate (4HB) building blocks was accumulated by feeding of whey sugars plus 3HV - and 4HB precursors. Kinetic analysis of the process reveals a µmax. of 0.14 1/h and a qp max. of 0.23 1/h, respectively. The final percentage of P-(3HB-co-21.8%-3HV-co-5.1%-4HB) in biomass amounted to 87.5 wt.-%. Also this material showed a narrow molecular mass distribution (PDI = 1.5) and a high difference between the two melting endotherms of the material (between 140 and 150 °C) and the onset of decomposition at 236 °C. The accomplished work provides viable strategies to obtain different high-quality PHAs which might be potential candidates for application in the medical and pharmaceutical field.  相似文献   

12.
The mechanical properties, such as Young's modulus, yield strength, and the elongation at breakage, were investigated for several sulfur-containing biopolymers P(3HB-co-3MP). A series of P(3HB-co-3MP) samples with 3MP unit content ranging from 6.6 to 39.1 mol-% was biosynthesized by fermentation using the PHA-synthesizing bacteria Cupriavidus necator. For comparison, the bacterially synthesized P(3HB) and P(3HB-co-3HP) with the 3HP unit content ranging from 13.1 to 21.1 mol-% were also investigated. It was found that the sulfur-containing P(3HB-co-3MP) is much more durable to stretching. Notably, P(3HB-co-3MP) with the 3MP unit content of only 6.6 mol-% was found to show excellent mechanical properties.  相似文献   

13.
Biosynthesis of polyhydroxyalkanoates (PHAs) consisting of 3-hydroxyalkanoates (3HAs) of 4 to 10 carbon atoms was examined in metabolically engineered Escherichia coli strains. When the fadA and/or fadB mutant E. coli strains harboring the plasmid containing the Pseudomonas sp. 61-3 phaC2 gene and the Ralstonia eutropha phaAB genes were cultured in Luria-Bertani (LB) medium supplemented with 2 g/L of sodium decanoate, all the recombinant E. coli strains synthesized PHAs consisting of C4, C6, C8, and C10 monomer units. The monomer composition of PHA was dependent on the E. coli strain used. When the fadA mutant E. coli was employed, PHA containing up to 63 mol% of 3-hydroyhexanoate was produced. In fadB and fadAB mutant E. coli strains, 3-hydroxybutyrate (3HB) was efficiently incorporated into PHA up to 86 mol%. Cultivation of recombinant fadA and/or fadB mutant E. coli strains in LB medium containing 10 g/L of sodium gluconate and 2 g/L of sodium decanoate resulted in the production of PHA copolymer containing a very high fraction of 3HB up to 95 mol%. Since the material properties of PHA copolymer consisting of a large fraction of 3HB and a small fraction of medium-chain-length 3HA are similar to those of low-density polyethylene, recombinant E. coli strains constructed in this study should be useful for the production of PHAs suitable for various commercial applications.  相似文献   

14.
Summary: The thermal and morphological properties of PEO/copolyether electrolyte and carbon black composite have been studied. A copolyether poly(propylene glycol)-block-poly(ethylene glycol)-block-poly(propylene glycol) bis(2-aminopropyl ether) was used at 20 wt.-% in relation to PEO in order the improve the carbon black dispersion through interaction with the amino end capped function. The polymer matrix presented semicrystalline structure and the addition of LiClO4 and carbon black decreases significantly the crystallinity of the system. Sub-micrometric dispersion of carbon black was observed. The conductivity results as a function of temperature exhibited a typical VTF behaviour for the electrolyte. Almost constant conductivities of 2 × 10−4 S · cm−1 were observed for the composite with 5 wt.-% of carbon black, in the range of temperature between 35 and 95 °C, which indicates a significantly contribution of electronic conduction.  相似文献   

15.
Summary: The potential of three different microbial wild type strains as polyhydroxyalkanoate (PHA) producers from whey lactose is compared. Homopolyester and co-polyester biosynthesis was investigated by the archaeon Haloferax mediterranei and the eubacterial strains Pseudomonas hydrogenovora and Hydrogenophaga pseudoflava. H. mediterranei accumulated 50 wt.-% of poly-3-(hydroxybutyrate-co-6%-hydroxyvalerate) in cell dry mass from hydrolyzed whey without addition of 3-hydroxyvalerate (3HV) precursors (specific productivity qp: 2.9 mg/g h). Using P. hydrogenovora, the final percentage of poly-3-hydroxybutyrate (PHB) amounted to 12 wt.-% (qp: 0.03 g/g h); co-feeding of valeric acid resulted in the production of 12 wt.-%. P-3(HB-co-21%-HV) (qp: 0.02 g/g h). With H. pseudoflava, it was possible to reach 40 wt.-% P-3 (HB-co-5%-HV) on not-hydrolyzed whey lactose plus valeric acid as 3HV precursor (qp: 9.1 mg/g h); on hydrolyzed whey lactose without addition of valeric acid, the strain produced 30 wt.-% of PHB (qp: 0.16 g/g h). The characterization of the isolated biopolyesters completes the study.  相似文献   

16.
Amino acid substitutions at two residues downstream from the active-site histidine of polyhydroxyalkanoate (PHA) synthases are effective for changing the composition and the molecular weight of PHA. In this study, saturation mutagenesis at the position Ala505 was applied to PHA synthase (PhaCAc) from Aeromonas caviae to investigate the effects on the composition and the molecular weight of PHA synthesized in Ralstonia eutropha. The copolymer composition and molecular weight of PHA were varied by association with amino acid substitutions. There was a strong relationship between copolymer composition and PHA synthase activity of the cells. This finding will serve as a rationale for producing tailor-made PHAs.  相似文献   

17.
We describe the characterization of polyhydroxyalkanoate (PHA)-producing bacteria isolated from an ammunition-polluted soil in Kitakyushu City, Japan. Over 270 strains were evaluated for PHA accumulation based on a colony staining method using Nile red. Of these, nine strains were selected based on the intensity of Nile red fluorescence and the cells were quantitatively analyzed for PHA by gas chromatography. PHA accumulation was observed in five strains, all of which are inferred to be close to the Bacillus cereus group according to 16S rDNA sequence analysis. Interestingly, these strains produced a PHA copolymer, poly(3-hydroxybutyrae-co-3-hydroxyvalerate) [P(3HB-co-3HV)], with a 3HV fraction up to 2 mol% with glucose as a carbon source. Further characterization was performed on one isolate, B. cereus YB-4. Gel permeation chromatography analysis revealed that the number of average molecular weights of PHA accumulated in B. cereus YB-4 drastically changed from 722,000 to 85,000 over a 72-h cultivation period. Furthermore, the PHA synthase genes were cloned and the deduced amino acid sequences were determined. This study provides new insights into PHA biosynthesis by members of the B. cereus group.  相似文献   

18.
This study investigates the biosynthesis and characterization of P(3HB-co-3HV-co-3HHx) terpolymer from mixtures of palm kernel oil and 3HV-precursors by using recombinant Cupriavidus necator PHB4/pBBREE32d13. Sodium valerate and propionate have been evaluated for the generation of 3HV monomers. The feeding time of these precursors was a crucial factor that significantly affected the 3HV molar fractions, which ranged from 2 to 60 mol%. Sodium valerate was generally the better precursor in initiating the accumulation of 3HV monomers while maintaining high cell dry weight (7.9 g/L) and good PHA accumulation (79 wt%). However, the 3HHx molar fractions in the terpolymers at 72 h were consistent at about 2-7 mol%. P(3HB-co-3HV) copolymers have been known to exhibit approximately the same degree of crystallinity throughout a wide range of 3HV composition. Interestingly, in this study, terpolymers containing 58 mol% 3HB, 39 mol% 3HV and 3 mol% 3HHx showed elastomeric behavior. This study demonstrates the suitability of palm kernel oil as the main carbon source and both sodium propionate and sodium valerate as 3HV-precursors for the synthesis of novel compositions of P(3HB-co-3HV-co-3HHx) terpolymers with interesting properties.  相似文献   

19.
Numerous bacteria have been found to exhibit the capacity for intracellular polyhydroxyalkanoates (PHA) accumulation. Current methods for PHA production at the industrial scale are based on their synthesis from microbial isolates in either their wild form or by recombinant strains. High production costs are associated with these methods; thus, attempts have been made to develop more cost-effective processes. Reducing the cost of the carbon substrates (e.g., through feeding renewable wastes) and increasing the efficiency of production technologies (including both fermentation and downstream extraction and recovery) are two such examples of these attempts. PHA production processes based on mixed microbial cultures are being investigated as a possible technology to decrease production costs, since no sterilization is required and bacteria can adapt quite well to the complex substrates that may be present in waste material. PHA accumulation by mixed cultures has been found under various operational conditions and configurations at both bench-scale and full-scale production. The process known as "feast and famine" or as "aerobic dynamic feeding" seems to have a high potential for PHA production by mixed cultures. Enriched cultures submitted to a transient carbon supply can synthesize PHA at levels comparable to those of pure cultures. Indeed, the intracellular PHA content can reach around 70% of the cell dry weight, suggesting that this process could be competitive with pure culture PHA production when fully developed. Basic and applied research of the PHA production process by mixed cultures has been carried out in the past decade, focusing on areas such as microbial characterization, process configuration, reactor operational strategies, process modeling and control, and polymer characterization. This paper presents a review of the PHA production process with mixed cultures, encompassing the findings reported in the literature as well as our own experimental results in relation to each of these areas.  相似文献   

20.
This study investigated the relationship of growth conditions, host strains and molecular weights of poly[(R)-3-hydroxybutyrate] [P(3HB)] synthesized by genetically engineered Escherichia coli. Various PHA synthases belonging to types I-IV enzymes were expressed in E. coli JM109 under the same experimental conditions, and the molecular weights of the polymers were characterized by gel permeation chromatography. The results demonstrate that P(3HB) polymers have varied molecular weights and polydispersities dependent on the characteristics of the individual PHA synthase employed. P(3HB) with high number-average molecular weights (Mn) [(1.5-4.0) × 106] and narrow polydispersities (1.6-1.8) were synthesized by PHA synthases from Ralstonia eutropha (type I), Delftia acidovorans (type I) and Allochromatium vinosum (type III). Contrary to these, P(3HB) with relatively low Mn [(0.17-0.79) × 106] and broad polydispersities (2.2-9.0) were synthesized by PHA synthases from Aeromonas caviae (type I), Pseudomonas sp. 61-3 (type II) and Bacillus sp. INT005 (type IV). Furthermore, the molecular weights of P(3HB) synthesized under various culture conditions, in various hosts of E. coli and by mutants of PHA synthase were characterized. It was found that, in addition to culture pH [Kusaka et al. Appl Microbiol Biotechnol 1997;47:140], other variances such as culture temperature, host strain and use of mutants are effective in changing polymer molecular weight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号