首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The torsional potentials, molecular structures, conformational stability, and vibrational wavenumbers for the rotational isomers of 2-formylfuran and 3-formylfuran are computed using the density functional theory (B3LYP) method with the 6-31+G* basis set. All structures are fully optimized and the optimized geometries, rotational constants, dipole moments, and energies are presented. From the computations, both 2-formylfuran and 3-formylfuran are predicted to exist predominantly in trans conformation with a cis–trans rotational barrier of 11.19 kcal/mol and 8.10 kcal/mol, respectively. The vibrational wavenumbers and the corresponding vibrational assignments of the molecules in the C s symmetry are examined and the infrared spectra of the molecules are simulated using the wavenumbers and the corresponding intensities obtained from the computations. The effect of solvents on the conformational stability of all the molecules in nine different solvents (heptane, chloroform, tetrahydrofuran, dichloroethane, acetone, ethanol, methanol, dimethylsulfoxide, and water) is investigated. The integral equation formalism in the polarizable continuum model (IEF-PCM) is used for all solution phase computations.  相似文献   

2.
The conformational behavior and the structural stability of formyl fluoroketene, formyl chloroketene and formyl methylketene were investigated by utilizing quantum mechanical DFT calculations at B3LYP/6-31I + + G** and ab initio calculations at MP2/6-311 + + G** levels. The three molecules were predicted to have a planar s-cis<-->s-trans conformational equilibrium. From the calculations, the direction of the conformational equilibrium was found to be dependent on the nature of the substituting group. In formyl haloketenes, the cis conformation, where the C=O group eclipses the ketenic group, was expected to be of lower energy than the trans conformer. In the case of formyl methylketene the conformational stability was reversed and the trans form (the aldehydic hydrogen eclipsing the ketenic group) was calculated to be about 2 kcal mol(-1) lower in energy than the cis form. The calculated cis-trans energy barrier was found to be in the order: fluoride (15.3 kcal mol(-1)) > chloride (13.1 kcal mol(-1)) > methyl (11.7 kcal mol(-1). Full optimization was performed at the ground and the transition states of the molecules. The vibrational frequencies for the stable conformers of the three ketenic systems were computed at the DFT-B3LYP level, and the zero-point corrections were included into the calculated rotational barriers. Complete vibrational assignments were made on the basis of both normal coordinate calculations and comparison with experimental results of similar molecules.  相似文献   

3.
The internal rotations in acrylic and methacrylic acids CH2=CX-COOH and their amides CH2=CX-CONH2 (X is H or CH3) were investigated by DFT-B3LYP calculations with 6-311+G** basis set. The potential energy curves were consistent with two minima that correspond to planar cis and trans conformation in the case of the acids (or cis and near-trans forms in the case of the amides). Acrylic acid and acrylamide were predicted to have the cis form as the low and predominant conformation of the molecules. In the case of the methacrylic acid and methacrylamide, the conformational relative stability was predicted to reverse as going from the acrylic to the metha compounds. The trans conformer in methacrylic acid or the near-trans in methacrylamide were predicted to be thermodynamically low energy structures of the molecules. The CCCO rotational barrier was calculated to vary from 4 to 6kcal/mol in the four molecules. The OCOH and OCNH torsional barriers were calculated to be about 13 and 22kcal/mol in the acids and the amides, respectively. The vibrational frequencies of methacrylic acid and methacrylamide were computed at the DFT-B3LYP/6-311+G** level and reliable vibrational assignments were made on the basis of normal coordinate analyses and comparison with experimental data of both molecules in their low energy conformations.  相似文献   

4.
Molecular structure and vibrational frequencies of carbamoyl azide NH2CO-NNN have been investigated with ab initio and density functional theory (DFT) methods. The molecular geometries for all the possible conformers of the molecule were optimized using DFT-B3LYP, DFT-BLYP and MP2 applying the standard 6-311++G** basis set. From the calculations, the molecule was predicted to exist predominantly in cis conformation with the cis-trans rotational barrier of about 7.91-9.10 kcal/mol depending on the level of theory applied. The vibrational frequencies and the corresponding vibrational assignments of carbamoyl azide in Cs symmetry were examined theoretically and the calculated Infrared and Raman spectra of the molecule in the cis conformation were plotted. Observed frequencies for normal modes were compare with those calculated from normal mode coordinate analysis carried out on the basis of ab initio and DFT force fields using the standard 6-311++G** basis set of the theoretical optimized geometry. Theoretical IR intensities and Raman activities are reported.  相似文献   

5.
The structural stability and internal rotations in cyclopropanecarboxylic acid and cyclopropanecarboxamide were investigated by the DFT-B3LYP and the ab initio MP2 calculations using 6-311G** and 6-311+G** basis sets. The computations were extended to the MP4//MP2/6-311G** and CCSD(T)//MP2/6-311G** single-point calculations. From the calculations the molecules were predicted to exist predominantly in the cis (C=O group eclipses the cyclopropane ring) with a cis-trans barrier of about 4-6kcal/mol. The OCOH torsional barrier in the acid was estimated to be about 12-13kcal/mol while the corresponding OCNH torsional barrier in the amide was calculated to be about 20kcal/mol. The equilibrium constant k for the cis<-->trans interconversion in cyclopropanecarboxylic acid was calculated to be 0.1729 at 298.15K that corresponds to an equilibrium mixture of about 85% cis and 15% trans. The vibrational frequencies were computed at the DFT-B3LYP level. Normal coordinate calculations were carried out and potential energy distributions were calculated for the low energy cis conformer of the molecules. Complete vibrational assignments were made on the basis of normal coordinate calculations and comparison with experimental data of the molecules.  相似文献   

6.
Ab initio self-consistent field (SCF) Hartree-Fock calculations of sulfates R? O? SO3(?1) (R = Me, Et, i-Pr) and sulfamates R? NHSO3(?1) (R = H, Me, Et, i-Pr) were performed at the 4-31G(*S*N) //3-21G(*S*N) basis set levels, where asterisks indicate d functions on sulfur and nitrogen atoms. These standard levels were determined by comparing calculation results with several basis sets up to MP2/6-31G*//6-31G*. Several conformations per compound were studied to obtain molecular geometries, rotational barriers, and potential derived point charges. In methyl sulfate, the rotational barrier around the C? O bond is 1.6 kcal/mol at the MP2 level and 1.4 kcal/mol at the standard level. Its ground state has one of three HCOS torsion angles trans and one of three COSO torsion angles trans. Rotation over 60° around the single O? S bond in the sulfate group costs 2.5 kcal/mol at the MP2 and 2.1 kcal/mol at the standard level. For ethyl sulfate, the calculated rotational barrier in going from the ground state, which has its CCOS torsion angle trans, to the syn-periplanar conformation (CCOS torsion angle cis) is 4.8 kcal/mol. However, a much lower barrier of 0.7 kcal/mol leads to a secondary gauchelike conformation about 0.4 kcal/mol above the ground state, with the CCOS torsion angle at 87.6°. Again, one of the COSO torsion angles is trans in the ground state, and the rotational barrier for a 60° rotation of the sulfate group amounts to 1.8 kcal/mol. For methyl sulfamate, the rotational barriers are 2.5 kcal/mol around the C? N bond and 3.3 kcal/mol around the N? S bond. This is noteworthy because sulfamate itself has a calculated rotational barrier around the N? S bond of only 1.7 kcal/mol. These and other data were used to parameterize the well-known empirical force fields AMBER and CHARMm. When the new fields were tested by means of vibrational frequency calculations at the 6-31G*//6-31G* level for methyl sulfate, sulfamate, and methyl sulfamate ground states, the frequencies compared favorably with the AMBER and CHARMm calculated frequencies. The transferability of the force parameters to β-D -glucose-6-sulfate and isopropyl sulfate appears to be better than to isopropyl sulfamate. © 1995 by John Wiley & Sons, Inc.  相似文献   

7.
The Raman (3700-100 cm(-1)) and infrared (4000-400 cm(-1)) spectra of solid 2-aminophenol (2AP) have been recorded. The internal rotation of both OH and NH2 moieties produce ten conformers with either Cs or C1 symmetry. However, the calculated energies as well as the imaginary vibrational frequencies reduce rotational isomerism to five isomers. The molecular geometry has been optimized without any constraints using RHF, MP2 and B3LYP levels of theory at 6-31G(d), 6-311+G(d) and 6-31++G(d,p) basis sets. All calculations predict 1 (cis; OH is directed towards NH2) to be the most stable conformation except RHF/6-31++G(d,p) basis set. The 1 (cis) isomer is found to be more stable than 8 (trans; OH is away from the NH2 moiety and the NH bonds are out-of-plane) by 1.7 kcal/mol (598 cm(-1)) as obtained from MP2/6-31G(d) calculations. Aided by experimental and theoretical vibrational spectra, cis and trans 2AP are coexist in solution but cis isomer is more likely present in the crystalline state. Aided by MP2 and B3LYP frequency calculations, molecular force fields, simulated vibrational spectra utilizing 6-31G(d) basis set as well as normal coordinate analysis, complete vibrational assignments for HOC6H4NH2 and DOC6H4ND2 have been proposed. Furthermore, we carried out potential surface scan, to determine the barriers to internal rotations of NH2 and OH groups. All results are reported herein and compared with similar molecules when appropriate.  相似文献   

8.
Ab initio calculations predict that D3d symmetry of Si2F6 is more stable than D3h symmetry. The calculated potential barrier to internal rotation was 0.77, 0.73 and 0.78 kcal/mol using HF/6-31G*, B3LYP/6-31G* and MP2/6-31G* methods respectively, which was in good agreement with the experimental value between 0.51±0.10 and 0.73±0.14 kcal/mol. The optimized geometries, harmonic force fields, infrared intensities, Raman activities, and vibrational frequencies are reported for D3d symmetry of Si2F6 from HF/6-31G* and B3LYP/6-31G*. A normal coordinate analysis was carried out. The average error between the scaled DFT frequencies obtained from the B3LYP/6-31G* calculation and observed frequencies was 4.2 cm−1 and the average error between the scaled HF and observed frequencies was 2.2 cm−1.  相似文献   

9.
The conformational potential energy surface as a function of the two internal torsion angles in C-nitrosomethanol has been obtained using the semiempirical AM1 method. Optimized geometries are reported for the local minima on this surface and also for the corresponding points on the HF/6-31G, 6-31G*, and 6-31G** surfaces. All methods predict cis and trans minima which occur in degenerate pairs, each pair being connected by a transition state of Cs symmetry. The AM1 structures are found to compare well with the corresponding ab initio structures. Ab initio HF/6-31G and HF/6-31G* harmonic vibrational frequencies are reported for the cis and trans forms of nitrosomethanol. When scaled appropriately the calculated frequencies are found to compare well with experimental frequencies. The ab initio calculations predict the energy barrier for cis → trans isomerization to be between 5.8 and 6.5 kcal/mol with the trans → cis isomerization barrier lying between 2.3 and 6.5 kcal/mol. The corresponding AM1 energy barriers are around 1 kcal/mol lower in energy. The ab initio calculations predict the barrier to conversion between the two cis rotamers to be very small with the AM1 value being around 1 kcal/mol. Both AM1 and ab initio calculations predict interconversion between trans rotamers to require between 1.2 and 1.4 kcal/mol.  相似文献   

10.
The structural stability of sulfolane (tetrahydrothiophene1,1-dioxide) and 3-sulfolene (dihydrothiophene1,1-dioxide) was investigated by DFT-B3LYP and ab initio MP2 calculations with 6-311+G**) basis set. The calculated symmetric ring-puckering potential of 3-sulfolene at the B3LYP level is consistent with a flat minimum that corresponds to a planar ring but at the MP2 level with a double minimum with a low barrier of about 193calmol(-1) to ring planarity in reasonable agreement with experimental results. From the calculations at the two levels of theory sulfolane was predicted to exist predominantly in the twist conformation. The vibrational wavenumbers were calculated at the MP2/6-31G** level of theory and the potential energy distributions PED among the symmetry coordinates of the normal modes were computed for the low-energy structure of the molecules. Complete vibrational assignments were provided on the basis of the calculated PED values. The experimental infrared and Raman spectra of the two molecules were compared to the calculated ones.  相似文献   

11.
The vibrational, Raman, and IR, spectra of the five 12-crown-4 (12c4) complexes with Li+, Na+, K+, Rb+, and Cs+ alkali metal cations were measured. Except for a small shift of the position of some bands in the vibrational spectra of the Li+ complex, the vibrational spectra of the five complexes are so similar that it is concluded that the five complexes exist in the same conformation. B3LYP/6-31+G* force fields were calculated for six of the eight predicted conformations in a previous report (J. Phys. Chem. A 2005, 109, 8041) of the 12c4-Li+, Na+, and K+ complexes that are of symmetries higher than the C1 symmetry. These six conformations, in energy order, are of C4, Cs, Cs, C(2v), C(2v), and Cs symmetries. Comparison between the experimental and calculated vibrational frequencies assuming any of the above-mentioned six conformations shows that the five complexes exist in the C4 conformation. This agrees with the fact that the five alkali metal cations are larger than the 12c4 ring cavity. The B3LYP/6-31+G* force fields of the C4 conformation of the Li+, Na+ and K+ complexes were scaled using a set of eight scale factors and the scale factors were varied so as to minimize the difference between the calculated and experimental vibrational frequencies. The root-mean-square (rms) deviations of the calculated frequencies from the experimental frequencies were 7.7, 5.6, and 5.1 cm(-1) for the Li+, Na+, and K+ complexes, respectively. To account for the earlier results of the Li+ complex that the Cs conformation is more stable than the C4 conformation by 0.16 kcal/mol at the MP2/6-31+G* level, optimized geometries of the complex were calculated for the C4 and Cs conformations at the MP2/6-311++G** level. The C4 conformation was calculated to be more stable than the Cs conformation by 0.13 kcal/mol.  相似文献   

12.
The molecular structures, conformational stabilities, and infrared vibrational wavenumbers of 2-thiophenecarboxaldehyde and 3-thiophenecarboxaldehyde are computed using Becke-3–Lee–Yang–Parr (B3LYP) with the 6-311++G** basis set. From the computations, cis-2-thiophenecarboxaldehyde is found to be more stable than the transfer conformer with an energy difference of 1.22 kcal/mol, while trans-3-thiophenecarboxaldehyde is found to be more stable than the cis conformer by 0.89 kcal/mol. The computed dipole moments, structural parameters, relative stabilities of the conformers and infrared vibrational wavenumbers of the two molecules coherently support the experimental data in the literature. The normal vibrational wavenumbers are characterized in terms of the potential energy distribution using the VEDA4 program. The effect of solvents on the conformational stability of the molecules in nine different solvents is investigated using the polarizable continuum model.  相似文献   

13.
A series of intramolecular hetero-Diels-Alder reactions of iminium and imine dienophiles has been explored with density functional theory using the B3LYP functional and 6-31+G* basis set. Aqueous solvation energies were calculated with the CPCM method. DFT predicts that these reactions are concerted but involve highly asynchronous transition states. Stereochemical preferences of imine cycloaddition transition states arise from electron repulsion of the nitrogen lone pair with electron density from the butadiene moiety. Protonation of the nitrogen leads to a highly asynchronous transition state. The iminium dienophiles are predicted to have a 17 kcal/mol lower barrier than the corresponding imines, even in aqueous solution.  相似文献   

14.
The structural stability of (trihalomethyl)sulfenyl halides CX3-SX (X is F and Cl) was investigated by DFT-B3LYP and ab initio MP2 calculations using 6-311 + G** basis set. Full energy optimizations were carried out from which the three-fold barrier about C-S bond was calculated to be about 3 kcal mol(-1) in (trifluoromethyl)sulfenyl fluoride and (trifluoromethyl)sulfenyl chloride and about 6 kcal mol(-1) in (trichloromethyl)sulfenyl fluoride and (trichloromethyl)sulfenyl chloride. The vibrational frequencies of the four molecules were computed at the DFT-B3LYP level and the vibrational assignments for the normal modes of the compounds in their ground state structure were made on the basis of normal coordinate calculations and reported experimental data.  相似文献   

15.
In this work, the molecular conformation and vibrational analysis of 2-, 3-, 4-nitrobenzenesulfonamide (abbreviated as 2-, 3-, 4-NBSA) were presented for the ground state using experimental techniques (FT-IR and FT-Raman) and density functional theory (DFT) employing B3LYP exchange correlation with the 6-311++G(d,p) basis set. The complete assignments of fundamental vibrations were performed on the basis of the experimental results and total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. The effects of the nitro group substituent on the characteristic benzene sulfonamides bands in the spectra were discussed. Raman activities calculated by DFT method have been converted to the corresponding Raman intensities using Raman scattering theory. Optimized structure of compounds were interpreted and compared with the earlier reported experimental values for studied molecules. The observed and the calculated geometric parameters and vibrational wavenumbers were compared and found to be in good agreement.  相似文献   

16.
The molecular structure and vibrational spectra of cyanuric chloride have been investigated by density functional theory (DFT) using standard B3LYP/6-31G* and B3LYP/6-311+G** method and basis set combinations. The DFT force field transformed to natural internal coordinates was corrected by a well-established set of scale factors that were found to be transferable to the title compound. Both the calculated structural parameters and vibrational frequencies are in good agreement with the available experimental data.  相似文献   

17.
In this work, FT-IR and FT-Raman spectra of 1-methoxynapthalene (C(11)H(10)O) have been reported in the regions 4000-400 cm(-1) and 3500-100 cm(-1), respectively. Density functional method (DFT) has been used to calculate the optimized geometrical parameters, atomic charges, vibrational wavenumbers and intensity of the vibrational bands. The vibrational frequencies have been calculated and scaled values are compared with experimental FT-IR and FT-Raman spectra. The structure optimizations and normal coordinate force field calculations are based on density functional theory (DFT) method with B3LYP/3-21G, B3LYP/6-31G, B3LYP/6-31G(d,p) and B3LYP/6-311++G(d,p) basis sets. The complete vibrational assignments of wavenumbers are made on the basis of potential energy distribution (PED). The optimized geometric parameters are compared with experimental values of naphthoic acid. The results of the calculation shows excellent agreement between experimental and calculated frequencies in B3LYP/6-311++G(d,p) basis set. The effects due to the substitutions of methyl group and carbon-oxygen bond are also investigated. A study on the electronic properties, such as excitation energies and wavelengths, were performed by time-dependent DFT (TD-DFT) approach. HOMO and LUMO energies are calculated that these energies show charge transfer occurs within the molecule.  相似文献   

18.
pi-pi Interaction in pyridine dimer and trimer has been investigated in different geometries and orientations at the ab initio (HF, MP2) and DFT (B3LYP) levels of theory using various basis sets (6-31G, 6-31G, 6-311++G) and corrected for basis set superposition error (BSSE). While the HF and DFT calculations show the pyridine dimer and the trimer to be unstable with respect to the monomer, the MP2 calculations show them to be clearly stable, thus emphasizing the need to include electron correlation while determining stacking interaction in such systems. The calculated MP2/6-311++G binding energy (100% BSSE corrected) of the parallel-sandwich, antiparallel-sandwich, parallel-displaced, antiparallel-displaced, T-up and T-down geometries for pyridine dimer are 1.53, 3.05, 2.39, 3.97, 1.91, 1.47 kcal/mol, respectively. The results show the antiparallel-displaced geometry to be the most stable. The binding energies for the trimer in parallel-sandwich, antiparallel-sandwich, and antiparallel-displaced geometry are found to be 3.18, 6.14, and 8.04 kcal/mol, respectively.  相似文献   

19.
The molecular geometry of tetrahydrothiophene (THT) was quantum mechanically calculated using the split valence 6-31G** basis set. Electron correlation energy has been computed employing MP2 method. The molecule showed a twist form puckered structure with a twist torsion angle of 13 degrees and has a total energy of -347,877.514 kcal/mol of which a 436.715 kcal/mol electron correlation energy. The envelope form of the molecule showed an inter-plane angle of 22 degrees and has a total energy of -347,874.430 kcal/mol involving -436.558 kcal/mol electron correlation energy. The normal coordinates of the molecule were theoretically analyzed and the fundamental vibrational frequencies were calculated. The IR and laser Raman spectra of THT molecule was measured. All the observed vibrational bands including combination bands and overtones were assigned to normal modes with the aid of the potential energy distribution values obtained from normal coordinate calculations. The molecular force field was determined by refining the initial set of force constants using the least square fit method instead of using the less accurate scaling factor methods. The determined molecular force field has produced simulated frequencies which best match the observed values. The lowest-energy modes of vibration were two molecular out-of-plane deformations, observed at 114 and 166 cm(-1). The barrier of ring twisting estimated from the observed ring out-of-plane vibrational mode at 114 cm(-1) was estimated.  相似文献   

20.
Maleimide serves as an important starting material in the synthesis of drugs and enzyme inhibitors. In the present paper, knowing the importance of tautomerization in maleimide for its drug action, potential energy surface of maleimide is studied and its tautomerization has been discussed and compared with tautomerization of formamide. Gas phase tautomerization of maleimide requires large amount of energy (23·21 kcal/mol) in comparison to formamide (15·05 kcal/mol) at HF/6-31+G* level. Thus making the proton transfer reaction a difficult process in gas phase. Water molecule lowers the energy barrier of tautomerization thus facilitating the tautomerization of maleimide to 5-hydroxy-pyrrol-2-one. Water assisted tautomerization of maleimide requires 19·60 kcal/mol energy at HF/6-31+G* and 17·63 kcal/mol energy at B3LYP/6-31+G* level, a decrease of 3·61 and 5·96 kcal/mol over gas phase tautomerization. Whereas, tautomerization of formamide requires 14·16 and 12·84 kcal/mol energy, a decrease of 0·89 and 2·01 kcal/mol energy over gas phase tautomerization at HF/6-31+G* and B3LYP/6-31+G* level, respectively. Water-assisted tautomerization in maleimide and formamide showed that difference in energy barrier reduces to 2·83 kcal/mol from 10·41 kcal/mol (in gas phase) at B3LYP level, which resulted that maleimide readily undergoes tautomerization in water molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号