首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The problem of poor peak shape for multiply charged negative-ion analytes under aqueous normal phase (ANP) conditions is investigated. Because less than adequate efficiency and symmetry can occur with a variety of mobile phases, gradients and additives, and to varying degrees depending on the instrument, sources other than solute/stationary phase interactions are more likely the cause. Since it is known that many of these compounds can interact strongly with metal ions, addition of a chelating agent to the mobile phase and/or the sample solvent was tested. In particular, ethylenediaminetetraacetic acid (EDTA) is a compound that forms strong complexes with most di-and tri-valent metal ions and can be used to verify whether trace amounts of these species are the source of the problem. In addition, the retention of a number of anionic compounds was measured at various concentrations of ammonium acetate and formate with EDTA in the mobile phase.  相似文献   

2.
Evaluation of lipophilicity parameters for basic compounds using different chromatographic stationary phases is presented. An HPLC method for determination of lipophilic molecule-stationary phase interactions was based on gradient analysis. Differences in correlation between the lipophilicity of compounds and experimental chromatographic results obtained in pseudo-membrane systems showed a strong influence of stationary phase structure and physico-chemical properties. beta-Blocker drugs with varying lipophilicity and bio-activity were chosen as test compounds. The stationary phases used for the study were monolithic rod-structure C18 and silica gel octadecyl phase SG-C18 as reference material. The second group was silica gel-based polar-embedded alkylamide and cholesterolic phases. The mobile phase was composed of acetonitrile or methanol with ammonium acetate, and a linear gradient of methanol and acetonitrile in mobile phase was performed. A linear correlation of plots of log k(g) = f(log P) was observed, especially for polar-embedded phases, and this allowed log P(HPLC) to be calculated. The behavior of stationary phases in methanol and acetonitrile buffer showed differences between obtained log P(HPLC) values.  相似文献   

3.
The effects of increasing concentrations of ammonium acetate additive in supercritical fluid chromatography were studied on silica, 2-ethyl-pyridine and endcapped 2-ethyl-pyridine stationary phases. The study involved the addition of increasing concentrations of the ammonium acetate either in the mobile phase modifier (methanol) or in the sample solvent. The effects of ammonium acetate on retention and peak shape of the analytes were evaluated. Compounds that exhibited satisfactory chromatographic behaviour in the absence of the additive were virtually unaffected by its presence in the mobile phase or sample solvent. Nevertheless, compounds that exhibited late elution and strongly tailing peak shapes when pure methanol was used showed dramatically improved chromatographic behaviour in the presence of the additive. Shorter retention was observed not only when the modifier was introduced in the mobile phase but also when it was in the sample solvent.  相似文献   

4.
建立了以多糖衍生物为手性固定相的高效液相色谱-串联质谱(HPLC-MS/MS)直接拆分氰戊菊酯对映体的方法。在反相液相色谱条件下,考察了手性固定相的种类、流动相组成、柱温、流速对氰戊菊酯4个立体异构体分离的影响。同时,利用热力学方法对氰戊菊酯的立体异构体与固定相之间的色谱保留和分离的热力学机理进行了探讨。结果表明:采用Lux Cellulose-3(纤维素-三(4-甲基苯甲酸酯))手性色谱柱,在以流动相为乙腈-水(5 mmol/L甲酸铵)=(55:45,V:V)流速0.4 mL/min,柱温30℃的条件下,可在14 mins内实现氰戊菊酯4个立体异构体的基线分离。拓展了HPLC-MS/MS在菊酯类手性农药对映体分离及检测上的应用。  相似文献   

5.
We investigated the mechanisms involved in the retention of various peptides on a stationary phase embedded with a quaternary ammonium group (BS C23), by high-performance liquid chromatography. This was compared with peptide retention on a conventional reversed-phase C18 (RP C18) column under isocratic conditions, to understand better the various mechanisms involved. Chromatographic characterization of the two stationary phases with “model” compounds showed that BS C23 is less hydrophobic than RP C18 and induces electrostatic interaction (attraction or repulsion) with ionized compounds. If reversed-phase partitioning was the predominant retention phenomenon, for both stationary phases, the retention mechanisms in BS C23 provided different selectivity to that of RP C18. Electrostatic attraction or repulsion was clearly observed between peptides and the permanent positively charged group embedded in BS C23 depending on the pH. For most of the peptides, a weak anion-exchange mechanism was observed on the quaternary ammonium-embedded stationary phase if mobile phases at neutral pH and low ionic strengths were employed.  相似文献   

6.
Elution profiles of kynurenic acid (KYNA) and 7‐chlorokynurenic acid (Cl‐KYNA) were examined by high‐performance liquid chromatography (HPLC) using a triazole‐bonded stationary phase column (Cosmosil® HILIC) under isocratic elution of a mobile phase consisting of CH3CN–aqueous 10 mm ammonium formate between pH 3.0 and 6.0. The capacity factors of KYNA and Cl‐KYNA varied with both the CH3CN content and the pH of the mobile phase. The elution order of KYNA and Cl‐KYNA was reversed between the CH3CN‐ and H2O‐rich mobile phases, suggesting that hydrophilic interactions and anion‐exchange interactions caused retention of KYNA and Cl‐KYNA in the CH3CN‐ and H2O‐rich mobile phases, respectively. The present HPLC method using a triazole‐bonded column and fluorescence detection (excitation 250 nm, emission 398 nm) was applied to monitor in vitro production of KYNA from d ‐kynurenine (d ‐KYN) by d ‐amino acid oxidase (DAO) using Cl‐KYNA as an internal standard. A single KYNA peak was clearly observed after enzymatic reaction of d ‐KYN with DAO. Production of KYNA from d ‐KYN was suppressed by the addition of commercial DAO inhibitors. The present HPLC method can be used to evaluate DAO activity and DAO inhibitory effects in candidate drugs for the treatment of schizophrenia. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
A novel zwitterionic hydrophilic porous monolithic stationary phase was prepared based on the thermal‐initiated copolymerization of N,N‐dimethyl‐N‐(3‐methacryl‐amidopropyl)‐N‐(3‐(sulfopropyl)ammonium betaine and ethylene glycol dimethacrylate. A typical hydrophilic separation mechanism was observed at a highly organic mobile phase (ACN >60%) on this optimized zwitterionic hydrophilic interaction chromatography (HILIC) monolithic stationary phase. Good permeability, stability, and column efficiency were observed on the final monolithic column. Additionally, a weak electrostatic interaction for charged analytes was confirmed in analysis of six benzoic acids by studying the influence of mobile phase pH and salt concentration on their retention behaviors on the obtained zwitterionic HILIC monolithic column. The optimized zwitterionic HILIC monolith exhibited good selectivity for a range of polar test analytes.  相似文献   

8.
A comparative study of peak shape, elution behavior, and resolution of 16 beta-blockers (acebutolol, alprenolol, atenolol, bisoprolol, carteolol, celiprolol, esmolol, labetalol, metoprolol, nadolol, oxprenolol, pindolol, practolol, propranolol, sotalol, and timolol) chromatographed with hybrid mobile phases of triethylamine (TEA)-acetonitrile and sodium dodecyl sulfate (SDS)-propanol is performed using conventional reversed-phase columns and isocratic elution. Both solvent modifiers (TEA and SDS) prevent the interaction of the basic drugs with the alkyl-bonded phase. However, the protection mechanisms of silanols on the packing are different. Whereas TEA associates with the silanol sites (blocking ion-exchange processes or repelling the solutes), the long hydrophobic chain of SDS is inserted in the bonded organic layer with the sulfate group protruding outside, which makes the stationary phase negatively charged. The effects of TEA, acetonitrile, SDS, and propanol on the elution strength, efficiency, peak asymmetry, and resolution are examined under an experimental design basis that is assisted by computer simulation to reach more general conclusions. The combination of improved peak shapes, larger selectivity, and a smaller range in retention among compounds of extreme polarity leads to the observation that a greater number of beta-blockers can be resolved with a hybrid micellar system.  相似文献   

9.
Several mobile phase additives (i.e., organic acids and their ammonium salts) were used to modulate the chromatographic retention of cyanocobalamin and its cis‐diaminemonochloroplatinum(II) conjugate, depending on the specific nature of the stationary phase. Regardless of the mobile phase additive, the positively charged cyanocobalamin‐cis‐diaminemonochloroplatinum(II) conjugate was systematically less retained than cyanocobalamin on a conventional octadecyl‐silica column. In contrast, the amide‐embedded C18 column exhibited a progressive increase in the conjugate retention time upon changing the mobile phase additive from organic (acetic, formic and trifluoroacetic) acids to ammonium salts, ultimately leading to an inversion of the elution order. This change of retention was interpreted by invoking the interplay between hydrophobic interactions, hydrogen bonding between the conjugate and the polar amide groups and the ion‐pairing ability of the lyophilic counterions, whereby the acetate anion was found to be the most suitable to control the solute retention.  相似文献   

10.
Lü H  Wang J  Wang X  Wu X  Lin X  Xie Z 《Journal of separation science》2007,30(17):2993-2999
A monolithic stationary phase was prepared in a single step by in situ copolymerization of iso-butyl methacrylate (IBMA), ethylene dimethacrylate (EDMA), and N,N-dimethylallylamine (DMAA) in a binary porogenic solvent consisting of N,N-dimethylformamide (DMF) and 1,4-butanediol. As the frame structures of monoliths, the amino groups are linked to support the EOF necessary for driving the mobile phase through the monolithic capillary, while the hydrophobic groups are introduced to provide the nonpolar sites for the chromatographic retention. To evaluate the column performance, separations of typical kinds of neutral or charged homologs, such as alkylbenzenes, phenols (including isomeric compounds of hydroquinone, resorcin, and catechol), and anilines (including isomeric compounds of o-phenylenediamine and 1,4-phenylenediamine), were performed, respectively on the prepared column under the mode of pressurized pCEC. Effects of the buffer pH and the mobile phase composition on the linear velocity of mobile phase and the retention factors of these compounds were investigated. It was found that the retention mechanism of charged solutes could be attributed to a mixed mode of hydrophobic interaction and electrophoresis, while an RP chromatographic behavior on the monolithic stationary phases was exhibited for neutral solutes. Especially, basic compounds such as anilines were well separated on the monolithic columns in the "counterdirectional mode," which effectively eliminated the electrostatic adsorption of basic analytes on the charged surface of the stationary phases.  相似文献   

11.
LC-electrospray ionization (ESI) MS conditions were optimized for the individual chiral separation of 19 compounds of pharmaceutical interest using the macrocyclic glycopeptide-based chiral stationary phases in both polar organic and reversed-phase modes (RPM). The influence of mobile phase composition and MS additive type on sensitivity was investigated for all classes of compounds tested. Compounds with amine or amide groups were efficiently separated, ionized, and detected with the addition of 0.1% (w/w) ammonium trifluoroacetate to the solvent system in either the reversed-phase or polar organic mode (POM). Macrocyclic glycopeptide coupled column technology was initially used to screen all chiral compounds analyzed. Baseline resolution of enantiomers was then achieved with relatively short retention times and high efficiencies on Chirobiotic T, Chirobiotic V or Chirobiotic R narrow bore chiral stationary phases. The polar organic mode offered better limits of detection (as low as 100 pg/ml) and sensitivity over reversed-phase methods. An optimum flow-rate range of 200-400 microl/min was necessary for sensitive chiral LC-ESI-MS analysis.  相似文献   

12.
《Electrophoresis》2018,39(16):2144-2151
The chromatographic behavior of new biogenic purine nucleosides in hydrophilic interaction liquid chromatography was examined on three different stationary phases, namely bare silica, and amide‐ and cyclofructan‐based stationary phases. The effects of buffer concentration, pH and acetonitrile‐to‐aqueous‐part ratio in the mobile phase on retention and peak shape were assessed. The retention coefficients and peak symmetry values substantially differed with respect to analytes´ structures, stationary phase properties and mobile phase composition. The bare silica column was unsuitable for these compounds under the chromatographic conditions tested due to very broad and asymmetrical peaks. Furthermore, the cyclofructan‐based stationary phase provided almost Gaussian peak shapes of all deazapurine nucleosides under most conditions tested. Therefore, the cyclofructan‐based stationary phase is the most suitable choice for the chromatographic analysis of nucleosides.  相似文献   

13.
The solvation parameter model system constants and retention factors were used to interpret retention properties of 39 calibration compounds on a biphenylsiloxane-bonded stationary phase (Kinetex biphenyl) for acetone-water binary mobile phase systems containing 30–70% v/v. Variation in system constants, phase ratios, and retention factors of acetone-water binary mobile phases systems were compared with more commonly used acetonitrile and methanol mobile phase systems. Retention properties of acetone mobile phases on a Kinetex biphenyl column were more similar to that of acetonitrile than methanol mobile phases except with respect to selectivity equivalency. Importantly, selectivity differences arising between acetone and acetonitrile systems (the lower hydrogen-bond basicity of acetone-water mobile phases and differences in hydrogen-bond acidity, cavity formation and dispersion interactions) could be exploited in reversed-phase liquid chromatography method development on a Kinetex biphenyl stationary phase.  相似文献   

14.
A hydrophilic monolithic CEC column was prepared by thermal copolymerization of zwitterionic monomer 2‐methacryloyloxyethyl phosphorylcholine (MPC), pentaerythritol triacrylate (PETA), either methacrylatoethyl trimethyl ammonium chloride (META) or sodium 2‐methylpropene‐1‐sulfonate (MPS) in a polar binary porogen consisting of methanol and THF. A typical hydrophilic interaction LC retention mechanism was observed for low‐molecular weight polar compounds including amides, nucleotides, and nucleosides in the separation mode of hydrophilic interaction CEC, when high content of ACN (>60%) was used as the mobile phase. The effect of the electrostatic interaction between the analytes and the stationary phase was found to be negligible. The poly(MPC‐co‐PETA‐co‐META or MPS) monolithic columns have an average column efficiency of 40 000 plates/m and displayed with a satisfactory repeatability in terms of migration time and peak areas. Finally, the column was successfully applied to determine the impurities of a positively charged drug pramipexole which are often separated by ion pair RP chromatography due to their high hydrophilicity. All four components can be baseline separated within 5 min with BGE consisting of ACN/20 mM ammonium formate buffer (pH 3.0; 80/20).  相似文献   

15.
A monolithic silica based strong cation-exchange stationary phase was successfully prepared for capillary electrochromatography. The monolithic silica matrix from a sol-gel process was chemically modified by treatment with 3-mercaptopropyltrimethoxysilane followed by a chemical oxidation procedure to produce the desired function. The strong cation-exchange stationary phase was characterized by its substantial and stable electroosmotic flow (EOF), and it was observed that the EOF value of the prepared column remained almost unchanged at different buffer pH values and slowly decreased with increasing phosphate concentration in the mobile phase. The monolithic silica column with strong cation-exchange stationary phase has been successfully employed in the electrochromatographic separation of beta-blockers and alkaloids extracted from traditional Chinese medicines (TCMs). The column efficiencies for the tested beta-blockers varied from 210,000 to 340,000 plates/m. A peak compression effect was observed for atenolol with the mobile phase having a low phosphate concentration.  相似文献   

16.
Polar columns used in the HILIC (Hydrophilic Interaction Liquid Chromatography) systems take up water from the mixed aqueous–organic mobile phases in excess of the water concentration in the bulk mobile phase. The adsorbed water forms a diffuse layer, which becomes a part of the HILIC stationary phase and plays dominant role in the retention of polar compounds. It is difficult to fix the exact boundary between the diffuse stationary and the bulk mobile phase, hence determining the column hold-up volume is subject to errors. Adopting a convention that presumes that the volume of the adsorbed water can be understood as the column stationary phase volume enables unambiguous determination of the volumes of the stationary and of the mobile phases in the column, which is necessary for obtaining thermodynamically correct chromatographic data in HILIC systems. The volume of the aqueous stationary phase, Vex, can be determined experimentally by frontal analysis combined with Karl Fischer titration method, yielding isotherms of water adsorbed on polar columns, which allow direct prediction of the effects of the composition of aqueous–organic mobile phase on the retention in HILIC systems, and more accurate determination of phase volumes in columns and consistent retention data for any mobile phase composition. The n phase volume ratios of 18 columns calculated according to the new phase convention strongly depend on the type of the polar column. Zwitterionic and TSK gel amide and amine columns show especially strong water adsorption.  相似文献   

17.
A novel bovine serum albumin (BSA)-modified magnesia-zirconia stationary phase was prepared using the sodium salt of cis-(3-methyloxiranyl)phosphonic acid (fosfomycin) as spacer and glutaraldehyde as coupler. Baseline separation of six derivatized amino acids (DNB-Leu, Dansyl-Val, etc.) was achieved on this column using ammonium acetate buffer-isopropanol mobile phase at a flow rate of 1.0 mL/min. The effects of mobile phase composition, eluent pH value, column temperature, and flow rate on the retention and separation of chiral compounds were also investigated. The BSA chiral stationary phase (BSA-CSP) was relatively stable under experimental conditions. The coupling reaction in this method was mild, reliable, and reproducible; thus it was also suitable for the immobilization of various biopolymers with amino groups in the preparation of chromatography stationary phases.  相似文献   

18.
In this study, two polyproline‐derived chiral selectors are bonded to monolithic silica gel columns. In spite of high chiral selector coverage, the derivatization was found to have only a slight effect on the hydrodynamics of the mobile phase through the column. The enantioseparation ability of the resulting chiral monolithic columns was evaluated with a series of structurally diverse racemic test compounds. When compared to analogous bead‐based chiral stationary phases, higher enantioseparation and broader application domain were observed for monolithic columns. Moreover, the increase in flow rate produces a minor reduction of resolution, which permits to shorten analysis time. Additionally, increased loadability defines chiral polyproline derived monoliths as adequate for preparative chromatography.  相似文献   

19.
In this study, the retention and selectivity of a mixture of basic polar drugs were investigated in hydrophilic interaction chromatographic conditions (HILIC) using nano-liquid chromatography (nano-LC). Six sympathomimetic drugs including ephedrine, norephedrine, synephrine, epinephrine, norepinephrine and norphenylephrine were separated by changing experimental parameters such as stationary phase, acetonitrile (ACN) content, buffer pH and concentration, column temperature. Four polar stationary phases (i.e. cyano-, diol-, aminopropyl-silica and Luna HILIC, a cross-linked diol phase) were selected and packed into fused silica capillary columns of 100 μm internal diameter (i.d.). Among the four stationary phases investigated a complete separation of the all studied compounds was achieved with aminopropyl silica and Luna HILIC stationary phases only. Best chromatographic results were obtained employing a mobile phase composed by ACN/water (92/8, v/v) containing 10 mM ammonium formate buffer pH 3. The influence of the capillary temperature on the resolution of the polar basic drugs was investigated in the range between 10 and 50 °C. Linear correlation of ln k vs. 1/T was observed for all the columns; ΔH° values were negative with Luna HILIC and positive with aminopropyl- and diol-silica stationary phases, demonstrating that different mechanisms were involved in the separation.To compare the chromatographic performance of the different columns, Van Deemter curves were also investigated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号