首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel type of dye-sensitized cell (DSC) with a passivated titanium sensor electrode located on top of the nanocrystalline titanium dioxide layer has been used to study the temperature dependence of the electron quasi-Fermi level relative to the I3-/I- redox-Fermi level under short circuit conditions. The results show that the Fermi level decreases with increasing temperature (-1.76 meV K(-1)) as predicted for diffusive electron transport at short circuit. A smaller temperature dependence (-0.25 meV K(-1)) of the position of the TiO2 conduction band relative to the I3-/I- redox-Fermi level was deduced from the shifts in the trap distribution. An expression for the temperature dependence of the open circuit voltage, U(photo), has been derived. The experimentally observed temperature dependence of U(photo) gave values of the activation energy (0.25 eV) and preexponential factor (10(8) s(-1)) for the transfer of electrons from the conduction band of the nanocrystalline TiO2 to triiodide ions.  相似文献   

2.
Solid-state dye-sensitized solar cells were fabricated using the organic hole-transporting medium (HTM) 2,2'7,7'-tetrakis-(N,N-di-p-methoxyphenyl-amine)-9,9'-spirobifluorene (spiro-MeOTAD), and three organic indoline-based sensitizer dyes with high molar extinction coefficients. The cells were characterized by several techniques, including spectral response measurements, photovoltage decay transients, intensity modulated photovoltage spectroscopy (IMVS), and charge extraction. The differences in apparent electron lifetime observed for cells fabricated using the three dyes are attributed in part to changes in the surface dipole potential at the TiO2/spiro-MeOTAD interface, which shift the TiO2 conduction band energy relative to the Fermi level of the HTM. These energy shifts influence both the open circuit voltage (as a result of changes in free electron density) and the short circuit current (as a consequence of changes in the overlap between the dye LUMO level and the conduction band). A self-consistent approach was used to derive the positions of the conduction band relative to the spiro-MeOTAD redox Fermi level for cells fabricated using the three dyes. The analysis also provided estimates of the free electron lifetime in spiro-MeOTAD cells. In order to evaluate the possible contribution of the adsorbed dyes to the observed changes in surface dipole potential, their dipole moments were estimated using ab initio density functional theory (DFT) calculations. Comparison of the calculated dipole contributions with the experimentally measured shifts in conduction band energy revealed that other factors such as proton adsorption may be predominant in determining the surface dipole potential.  相似文献   

3.
Al掺杂对锐钛矿型TiO2光催化性能影响的研究   总被引:1,自引:0,他引:1  
采用平面波赝势(PWPP)方法进行密度泛函(DFT)计算,研究了Al掺杂对锐钛矿晶体能带、态密度的影响.分析发现掺杂后Al原子3s和3p轨道上的电子虽然对晶体的价带和导带贡献不大,却诱使导带发生较大程度下移,禁带宽度减小,理论预测可以发生红移.采用低温燃烧合成法制备了Al掺杂锐钛矿型纳米TiO2,紫外-可见吸收光谱检测和甲基橙降解实验证明,Al掺杂TiO2光吸收强度增强,吸收带边界发生红移;光催化性能较纯TiO2有所改善.理论计算结果与实验结果相符.  相似文献   

4.
Zn‐doped anatase TiO2 nanoparticles are synthesized by a one‐step hydrothermal method. Detailed electrochemical measurements are undertaken to investigate the origin of the effect of Zn doping on the performance of dye‐sensitized solar cells (DSSCs). It is found that incorporation of Zn2+ into an anatase lattice elevates the edge of the conduction band (CB) of the photoanodes and the Fermi level is shifted toward the CB edge, which contributes to the improvement in open‐circuit voltage (VOC). Charge‐density plots across the cell voltage further confirm the increase in the CB edge in DSSCs directly. Photocurrent and transient photovoltage measurements are employed to study transport and recombination dynamics. The electron recombination is accelerated at higher voltages close to the CB edge, thus leading to a negative effect on the VOC.  相似文献   

5.
Electron transport in dye-sensitized nanocrystalline solar cells appears to be a slow diffusion-controlled process. Values of the apparent electron diffusion coefficient are many orders of magnitude smaller than those reported for bulk anatase. The slow transport of electrons has been attributed to multiple trapping (MT) at energy levels distributed exponentially in the band gap of the nanocrystalline oxide. In the MT model, release of immobile electrons from occupied traps to the conduction band is a thermally activated process, and it might therefore be expected that the apparent electron diffusion coefficient should depend strongly on temperature. In fact, rather small activation energies (0.1-0.25 eV) have been derived from time and frequency resolved measurements of the short circuit photocurrent. It is shown that the MT model can give rise to such anomalously low apparent activation energies as a consequence of the boundary conditions imposed by the short circuit condition and the quasi-static relationship between changes in the densities of free and trapped electrons. This conclusion has been confirmed by exact numerical solutions of the time-dependent generation/collection problem for periodic excitation that provide a good fit to experimental data.  相似文献   

6.
7.
In this study,we have performed first-principles screened exchanged hybrid density function theory with the HSE06 function calculations of the C-Mo,C-W,N-Nb and N-Ta codoped anatase TiO 2 systems to investigate the effect of codoping on the electronic structure of TiO 2.The calculated results demonstrate that(W(s)+C(s)) codoped TiO 2 narrows the band gap significantly,and have little influence on the position of conduction band edges,therefore,enhances the efficiency of the photocatalytic hydrogen generation from water and the photodegradation of organic pollutants.Moreover,the proper oxygen pressure and temperature are two key factors during synthesis which should be carefully under control so that the desired(W(s)+C(s)) codoped TiO 2 can be obtained.  相似文献   

8.
In this study, the influence of the TiCl(4) post-treatment on nanocrystalline TiO(2) films as electrodes in dye-sensitized solar cells is investigated and compared to nontreated films. As a result of this post-treatment cell efficiencies are improved, due to higher photocurrents. On a microscopic scale TiO(2) particle growth on the order of 1 nm is observed. Despite a corresponding decrease of BET surface area, more dye is adsorbed onto the oxide surface. Although it seems trivial to match this finding with the improved photocurrent, this performance improvement cannot be attributed to higher dye adsorption only. This follows from comparison between incident photon to current conversion efficiency (IPCE) and light absorption characteristics. Since the charge transport properties of the TiO(2) films are already more than sufficient without treatment, the increase in short circuit current density J(SC) cannot be related to improvements in charge transport either. Transient photocurrent measurements indicate a shift in the conduction band edge of the TiO(2) upon TiCl(4) treatment. It is concluded that the main contribution to enhanced current originates from this shift in conduction band edge, resulting in improved charge injection into the TiO(2).  相似文献   

9.
用光电化学方法研究了不对称菁类染料敏化TiO2纳米结构电极的光电转换过程.结果表明,该染料的电子激发态能级位置与TiO2纳米粒子导带边位置匹配较好,光激发染料后,其激发态电子可以注入到TiO2纳米多孔膜的导带,从而使TiO2纳米结构电极的吸收光谱和光电流谱红移至可见光区,其 IPCE(Incident photon-to-electron conversion efficiency)值最高可达84.3%.并进一步结合现场紫外-可见吸收光谱研究了外加电势对激发态染料往TiO2纳米多孔膜注入电子过程的影响.  相似文献   

10.
Adiabatic free energy surfaces (AFES) for adiabatic electrochemical reactions of electron transfer (ARET) are computed with exact allowance for electron–electron correlation effects (EECE) in models of electrode with nearly empty and almost filled conduction bands and analyzed on the basis of a diagram of kinetic modes obtained earlier. The EECE role in ARET for an electrode with an arbitrary Fermi level in a conduction band of an arbitrary width is discussed. In the general case, allowing for EECE gives at some model parameters results other than for the Fermi level coinciding with the conduction band center (model of a surface molecule, MSM). As in the case of MSM considered previously, EECE considerably reduce activation free energies and at some model parameters give qualitatively different AFES.  相似文献   

11.
The model system Pd/TiO2 (110) was used to evaluate the correlation between metal encapsulation and electronic structure of TiO2 crystals. We observed encapsulation of Pd clusters supported on TiO2 crystals, which were heavily Ar+ sputtered, Nb-doped, or reduced by vacuum annealing. In contrast, encapsulation was not observed on unreduced, undoped, or slightly sputtered TiO2 crystals. Our results indicate a strong dependence of the encapsulation process on the electron density in the conduction band of TiO2 and on the space charge formed at Pd/TiO2 interfaces. This behavior is controlled by the initial position of the Fermi energy level (EF) of the metal and the oxide before contact is established. We proved that encapsulation reactions are favored by n-type doping of the oxide and a large work function of the metal. On the basis of this mechanism, we conclude on general trends controlling encapsulation reactions of oxide-supported metal clusters and the strong metal-support interaction (SMSI).  相似文献   

12.
《Chemical physics letters》1987,142(5):399-404
The red and infrared emissions in the photoluminescence spectra of polycrystalline CdS electrodes have been studied as a function of the atmosphere and temperature of annealing, excitation light intensity, applied bias and electrolyte composition. The experimental results suggest that the red luminescence is associated with a recombination mechanism involving valence band holes and electrons trapped at sulfur vacancies at about 0.7 eV below the conduction band edge. Infrared emission seems to involve, besides sulfur vacancies, cadmium vacancies (hole traps) at about 0.3 eV above the valence band edge. Both hole injection rate and concentration of S and Cd vacancies are the parameters determining the shape of the luminescence spectra.  相似文献   

13.
铂修饰的稀土掺杂TiO2的光催化制氢活性   总被引:15,自引:0,他引:15  
王添辉  李越湘  彭绍琴  吕功煊  李树本 《化学学报》2005,63(9):797-801,i001
采用溶胶-凝胶浸渍法和光沉积法制备了系列Pt/RE/TiO2纳米光催化剂,通过XRD和电化学等手段进行了表征.以甲醛为电子给体,考察了光催化剂在紫外光照射下的制氢活性.稀土掺杂提高了Pt/TiO2光催化制氢活性,其顺序分别为La/TiO2>Sm/TiO2>Eu/TiO2>Dy/TiO2>Er/TiO2.掺入稀土元素后,阻止了TiO2从锐钛矿晶型向金红石晶型的转变,这是光催化剂活性提高的原因之一.计算晶格畸变应力e数据表明,Ti^4 可能反掺入了表面稀土氧化物的晶格中.电化学实验表明稀土掺杂TiO2的平带电位负移,其原因可解释为晶格畸变促使费米能级升高,-致催化剂导带的平带电位负移,因此导带上被激发电子具有更强的还原能力,从而有利于光催化制氢活性的提高.  相似文献   

14.
The spatial dependence of the electron quasi-Fermi level (QFL) in the interior of dye sensitized nanocrystalline solar cells (DSC) under short circuit conditions can be inferred from calculations based on a diffusive electron transport model. The calculations predict that the difference in the QFL between the electrolyte and contact sides of the TiO(2) layer under short circuit conditions at 1 sun could be as much as 0.5-0.7 eV. The predicted QFL profiles depend on assumptions made about energy positions, electron mobility, and the conduction band density of states. In this work, the position of the QFL at the electrolyte side of the dye sensitized TiO(2) film in a DSC has been measured using a thin passivated titanium contact deposited on top of the nanocrystalline TiO(2) by evaporation. The method allows changes in the electron QFL at all points on the IV characteristic of the cell to be monitored under dark and photostationary conditions. In addition, cells incorporating the titanium electrode can give information about the behavior of the QFL under dynamic conditions.  相似文献   

15.
Photoinduced interfacial electron transfer (ET) from molecular adsorbates to semiconductor nanoparticles has been a subject of intense recent interest. Unlike intramolecular ET, the existence of a quasicontinuum of electronic states in the solid leads to a dependence of ET rate on the density of accepting states in the semiconductor, which varies with the position of the adsorbate excited-state oxidation potential relative to the conduction band edge. For metal oxide semiconductors, their conduction band edge position varies with the pH of the solution, leading to pH-dependent interfacial ET rates in these materials. In this work we examine this dependence in Re(L(P))(CO)3Cl (or ReC1P) [L(P) = 2,2'-bipyridine-4,4'-bis-CH2PO(OH)2] and Re(L(A))(CO)3Cl (or ReC1A) [L(A) = 2,2'-bipyridine-4,4'-bis-CH2COOH] sensitized TiO2 and ReC1P sensitized SnO2 nanocrystalline thin films using femtosecond transient IR spectroscopy. ET rates are measured as a function of pH by monitoring the CO stretching modes of the adsorbates and mid-IR absorption of the injected electrons. The injection rate to TiO2 was found to decrease by 1000-fold from pH 0-9, while it reduced by only a factor of a few to SnO2 over a similar pH range. Comparison with the theoretical predictions based on Marcus' theory of nonadiabatic interfacial ET suggests that the observed pH-dependent ET rate can be qualitatively accounted for by considering the change of density of electron-accepting states caused by the pH-dependent conduction band edge position.  相似文献   

16.
Solid-state dye-sensitized solar cells of the type TiO(2)/dye/CuSCN have been made with thin Al(2)O(3) barriers between the TiO(2) and the dye. The Al(2)O(3)-treated cells show improved voltages and fill factors but lower short-circuit currents. Transient photovoltage and photocurrent measurements have been used to find the pseudo-first-order recombination rate constant (k(pfo)) and capacitance as a function of potential. Results show that k(pfo) is dependent on V(oc) with the same form as in TiO(2)/dye/electrolyte cells. The added Al(2)O(3) layer acts as a "tunnel barrier", reducing the k(pfo) and thus increasing V(oc). The decrease in k(pfo) also results in an increased fill factor. Capacitance vs voltage plots show the same curvature (approximately 150 mV/decade) as found in TiO(2)/dye/electrolyte cells. The application of one Al(2)O(3) layer does not cause a significant shift in the shape or position of the capacitance curve, indicating that changes in band offset play a lesser role in the observed V(oc) increase. Cells made with P25 TiO(2) have, on average, 2.5 times slower recombination rate constants (longer lifetimes) than those made with colloidal TiO(2). The cells with P25 also show 2.3 times higher trap density (DOS), which results in little change in the V(oc) between the two types of TiO(2). It is further noted that the recombination current in these cells cannot be calculated from the total charge times the first order rate constant.  相似文献   

17.
The electrical transport properties of nonstoichiometric EuGd2S4 prepared by heating under a high vacuum have been investigated. The samples heated were classified into two groups on the basis of their electrical transport behavior. One group comprised semiconducting materials heated at 1500 and 1600°C, for which the transport mechanism was found to be via electron hopping with activation energies ranging from 0.013 to 0.027 eV. Another group comprised metallic materials heated at 1700 and 1800°C. Their electrical transport was carried out through ordinary band conduction over the measured temperature range except at temperatures lower than 120°K, where hopping with a very small activation energy (~0.0035 eV) occurred predominantly.  相似文献   

18.
The dependence of the interfacial electron transfer in alizarin-sensitized TiO2 nanoparticles on the sample pH has been examined via transient absorbance spectroscopy in the visible spectral region (443-763 nm). Excitation of the alizarin/TiO2 system with visible pump pulses (lambdaexc = 500 nm) leads to a very fast electron injection (tauinj < 100 fs) over a wide pH range. Back electron transfer shows complicated multiphasic kinetics and strongly depends on the acidity of the solution. The strong dependence of back-electron-transfer dynamics on the ambient pH value is explained by a Nernstian-type change in the semiconductor band energy. Indeed, a variation of pH values over 7 units leads to a approximately 0.42 eV change of the conduction band edge position (i.e., the nominal free energy of the electron in the electrode). Assuming a pH-independent redox potential of the dye, this change was sufficient to push the system to a condition where direct photoinitiated electron injection to intraband gap surface states could be investigated. The existence of an electron-transfer pathway via surface trap states is supported by the similarity of the observed back-electron-transfer kinetics of alizarin/TiO2 at pH 9 and alizarin/ZrO2 reported in earlier work (J. Phys. Chem. B 2000, 104, 8995), where the conduction band edge is approximately 1 eV above the excited state of the dye. The influence of surface trap states on interfacial electron transfer has been studied, and a detailed analysis of their population, depopulation, and relaxation kinetics is performed. Therefore, alizarin adsorbed on the surface of TiO2 nanoparticles is an ideally suited system, where pH-dependent investigations allow a detailed study of the electron dynamics in trap states of TiO2 nanoparticles.  相似文献   

19.
N掺杂TiO_2光催化剂的微结构与吸光特性研究   总被引:1,自引:0,他引:1  
以紫外可见漫反射光谱(UV-VIS-DRS)和X射线光电子能谱(XPS)分析和研究了四种方法制备的N掺杂TiO2光催化剂的结构,即水解法(N/TiO2-H)、氨热还原法(N/TiO2-A)、机械化学法(N/TiO2-M)和尿素热处理法(N/TiO2-T)等.结果表明,N/TiO2-H和N/TiO2-T两种催化剂在490 nm处有吸收带边,可见光激发途径是掺杂的N以填隙方式形成的杂质能级吸收电子发生的跃迁引起的;而N/TiO2-A和N/TiO2-M两种催化剂在整个可见光区域内具有可见光吸收,其对可见光的激发途径是掺杂N和氧空缺共同作用的结果.理论计算的N杂质能级位于价带上0.75 eV,与实验观察到的吸收带边结果十分吻合.XPS结果表明,几种催化剂的N1 s结合能位置都在399 eV附近,显示为填隙掺杂的N原子.填隙掺杂的N/TiO2,其Ti原子的2p结合能与未掺杂的TiO2相比增加了+0.3-+0.6 eV,而O1s电子的结合能增加了+0.2-+0.5eV,这是因为填隙的N原子夺取Ti和O的电子,Ti和O原子周围的电子密度降低了.电子能谱和吸光特性的研究都表明,掺杂的机理是在TiO2晶格内形成N原子的填隙.  相似文献   

20.
The electronic structure of TiO(2) nanosheets on the Pt(110)-(1 × 2) surface has been investigated by using high resolution photoemission spectroscopy and x-ray absorption spectroscopy (XAS). The Ti 2p XAS spectra of the deposited TiO(2) films have been theoretically evaluated and, from the comparison with the experimental data, the assignment to a lepidocrocite-like structure is confirmed. Coexistence of TiO(2) islands with PtO(2) stripes for incomplete nanosheets is confirmed by high resolution photoemission data. The location of the valence and conduction band edges of the nanosheet has been experimentally determined allowing us to describe in details subtle electronic effects due to the interface with the substrate. The locations of the valence band maximum and the leading peak in the O 1s XAS spectrum indicate a band gap similar to anatase but with the Fermi level closer to mid-gap than found for bulk, n-type TiO(2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号