首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
Li4Ti5Ol2的合成及对Li+的离子交换动力学   总被引:2,自引:0,他引:2  
用溶胶-凝胶法合成出Li4Ti5Ol2, 对其进行了酸改性, 制得锂离子筛IE-H. 测定了IE-H对Li+、Na+的饱和交换容量和pH滴定曲线等离子交换性能, 并对其进行了X射线衍射分析, 同时采用中断接触法判断该离子交换反应的控制机理, 用缩核模型描述离子筛IE-H交换Li+的动力学. 结果表明, 合成出的Li4Ti5Ol2和锂离子筛IE-H均为尖晶石结构; 用不同浓度HNO3溶液处理Li4Ti5Ol2时, Li+的抽出率为19.6%-81.5%, Ti4+的抽出率在4.2%以下; 锂离子筛IE-H 对Li+的饱和交换容量较高, 达到5.95 mmol·g-1, 离子筛IE-H交换Li+的控制步骤是颗粒扩散控制(PDC), 得到了25 ℃, Li+浓度为20.0 mmol·L-1和5.0 mmol·L-1时锂离子筛交换Li+的动力学方程和颗粒扩散系数.  相似文献   

2.
用溶胶-凝胶法合成出尖晶石结构的LiNi0.05Mn1.95O4,用0.5 mol·L-1过硫酸铵对其进行改型,制得锂离子筛LiNiMn-H.LiNiMn-H对Li+的饱和交换容量达5.2 mmol·g-1.用缩核模型(Shrinking-Core Model)处理该离子交换的反应动力学数据得到LiNiMn-H吸附Li+时离子交换反应的控制步骤是颗粒扩散控制(PDC),同时得到了该实验条件下锂离子筛LiNiMn-H吸附Li+的动力学方程和颗粒扩散系数De.  相似文献   

3.
用LiNO3、Mn(Ac)2•4H2O和柠檬酸的混合溶液填充聚甲基丙烯酸甲酯胶体晶体模板, 在空气中氧化焙烧, 制备出三维有序大孔尖晶石型锂锰氧化物Li1.6Mn1.6O4. 前驱体经过0.1 mol/L盐酸脱锂后获得相应的三维有序大孔锂离子筛, 其大孔直径和孔壁厚度分别为240 nm和50 nm左右. XRD测试结果表明, Li1.6Mn1.6O4、锂离子筛和吸锂后的样品均保持尖晶石结构. 三维有序大孔材料呈现彼此连通的孔道空间, 缩短了Li+的平衡吸附时间, 前驱体脱锂率在80 ℃时达到95%, 而锰的溶损率在低于60 ℃时小于2.5%. 溶液温度对Li+的交换能力影响很大, 升高温度, Li+与H+的可逆交换程度增大, Li+的最大吸附容量为56.7 mg/g, 但处于锰16d八面体缺陷位置的氢难于被交换. pH滴定和分配系数(Kd)分析表明, 该固体酸在Li+, Na+和K+共存溶液中对Li+的吸附具有较高的选择性.  相似文献   

4.
对锂离子交换体前驱体Li1.5Ti1.625O4的造粒、改型及改型后的锂离子交换体H1.5Ti1.625O4用于油田咸水中微量锂的提取进行了实验室研究。结果表明,锂离子交换体H1.5Ti1.625O4对油田咸水中微量锂离子有很好的记忆性交换,有效交换容量达11.54mg/g,对锂离子表现出良好的离子筛效应。  相似文献   

5.
LiNi0.05Mn1.95O4的合成及其对Li+的离子交换热力学   总被引:1,自引:0,他引:1  
以乙酸锂、乙酸锰和乙酸镍为原料,采用溶胶-凝胶法合成出掺镍的尖晶石型锂锰氧化物LiNi0.05Mn1.95O4.用0.5 mol·L-1的过硫酸铵对其进行酸改性后制得锂离子筛(记作LiNiMn-H).经测定LiNi0.05Mn1.95O4在酸改性过程中Mn2+的溶出率仅为0.31%(w,质量分数),LiNiMn-H对锂离子的饱和交换容量达5.29 mmol(36.72 mg)Li+/g离子筛.测定了15、25、35、45℃LiNiMn-H在H+-Li+体系吸附锂的离子交换等温线,并利用Pitzer电解质溶液理论计算出该离子交换体系的活度系数,得到H+-Li+交换的平衡常数Ka,△Gm、△Hm,和△Sm等热力学参数.结果表明,Ka随温度的升高而降低,LiNiMn-H对Li+的选择性大于原来可交换阳离子(H+)的选择性,吸附锂的过程是自发过程(△Gm<0),该离子交换反应是放热反应.  相似文献   

6.
以乙酸锂、乙酸锰和乙酸镍为原料, 采用溶胶-凝胶法合成出掺镍的尖晶石型锂锰氧化物LiNi0.05Mn1.95O4. 用0.5 mol·L-1的过硫酸铵对其进行酸改性后制得锂离子筛(记作LiNiMn-H). 经测定LiNi0.05Mn1.95O4在酸改性过程中Mn2+的溶出率仅为0.31%(w, 质量分数), LiNiMn-H对锂离子的饱和交换容量达5.29 mmol (36.72 mg) Li+/g 离子筛. 测定了15、25、35、45 ℃ LiNiMn-H 在H+-Li+体系吸附锂的离子交换等温线, 并利用Pitzer 电解质溶液理论计算出该离子交换体系的活度系数, 得到H+-Li+交换的平衡常数Ka, △Gm、△Hm和△Sm等热力学参数. 结果表明, Ka随温度的升高而降低, LiNiMn-H对Li+的选择性大于原来可交换阳离子(H+)的选择性, 吸附锂的过程是自发过程(△Gm<0), 该离子交换反应是放热反应.  相似文献   

7.
张欢  其鲁  高学平  杨坤  张鼎 《无机化学学报》2010,26(9):1539-1543
用钛酸纳米管和LiOH溶液进行离子交换法得到了水合钛酸锂前驱体,进而在不同温度热处理制备了Li4Ti5O12。通过X射线衍射(XRD)、扫描电镜(SEM)、热分析(TG-DSC)和恒电流充放电测试对反应产物进行了研究。结果表明所得前驱体在500~700℃热处理可得到纳米结构的纯相Li4Ti5O12。所得Li4Ti5O12的可逆容量约为160mAh·g-1,循环稳定性随热处理温度的提高而增强,并因具有较短的锂离子扩散距离表现出极佳的倍率性能,在1600mA·g-1(约10C)的电流密度下放电下还保持140mAh·g-1的容量。  相似文献   

8.
胶体晶体模板法制备三维有序大孔复合氧化物*   总被引:1,自引:0,他引:1  
张桂臻  赵震  陈胜利  董鹏 《化学进展》2009,21(5):948-956
胶体晶体模板法是制备三维有序大孔(3DOM)复合氧化物材料的有效方法。制备过程一般包括3个步骤:首先,将单分散微球堆积成三维有序排列的胶体晶体;其次,将液态前驱体填充到胶体晶体的间隙,并在原位转化为固体骨架;最后,将微球去除,在原来微球间的空隙位置得到固体骨架,原来微球占据的位置则成为相互连接的孔穴。其中,胶体晶体模板的组装、前驱体的填充以及模板的去除都是制备3DOM复合氧化物的关键影响因素。本文针对这几个控制因素对胶体晶体模板法制备3DOM复合氧化物的影响进行了概述,并对孔结构的表征以及材料在催化和电极材料等方面的应用作了简单介绍。  相似文献   

9.
采用低温悬浮聚合造粒法,以苯乙烯为基体,以掺杂10%Li2Ti O3的Li1.6Mn1.6O4为原料,以正庚烷为造孔剂制备球形锂离子筛前驱体,经0.5 mol/L的HCl解析后得到球形锂离子筛。用扫描电子显微镜、X射线衍射仪、原子吸收分光光度计对样品的形貌和吸附性能等进行表征,实验结果表明,加入苯乙烯体积的5%正庚烷后的锂离子筛呈球形,锂离子筛中的孔隙率明显增加,比表面积达到1.768 m2/g,锂离子筛锂吸附量达到最大值9 mg/g,相比不添加正庚烷的对照组锂吸附量增加28.8%。吸附过程符合二级吸附动力学模型,属于化学吸附。球形锂离子筛的循环性能较好,添加5%正庚烷锂离子筛循环吸附10次后,Mn平均单次溶损率为0.13%,Ti平均单次溶损率为0.028%。  相似文献   

10.
锂离子交换剂制备及交换反应动力学   总被引:8,自引:0,他引:8  
通过XRD分析、Li+抽出率βLi及Mn2+溶出率γMn的计算,考察了不同焙烧温度及抽锂剂对前驱体锂锰氧化物LiMn2O4结构及稳定性的影响.结果表明, 750 ℃下焙烧2 h,并使用过硫酸铵(NH4)2S2O8作抽锂剂,制备的Li+交换剂MnO2(Li)对Li+的交换容量αLi较大.另外,通过Li+在固液两相间分配系数的测定及交换反应动力学实验,对离子交换反应机理进行了研究,并建立了有限浴条件下MnO2(Li)离子交换反应动力学模型.结果表明,该离子交换过程近似符合颗粒扩散控制;交换反应主要发生在交换剂颗粒外层;提出的动力学模型与实验结果符合较好.  相似文献   

11.
以MnSO4,KMnO4及LiOH为原料,经水热处理后得到LiMnO2,再由固相焙烧得到尖晶石相Li1.6Mn1.6O4,酸洗处理后得到锂离子筛。研究了水热温度,氧气和MnO4-/Mn2+的物质的量之比(nMnO4∶nMn^2+)对所得LiMnO2的组成及相应前驱体Li1.6Mn1.6O4酸处理中Mn溶损率的影响。开路电势测量及化学分析表明,氧气会参与反应。若按照理论氧化剂用量nMonO4∶nMn^2+=1∶4进行水热反应会导致杂质Li2MnO3和LiMn2O4的生成。若控制水热温度为160℃,nMnO4∶nMn^2+=1∶6时可得到纯相正交LiMnO2(o-LiMnO2)。所得离子筛在高镁锂比盐湖卤水中Li+吸附容量可达42.87 mg·g^-1,且对Li+具有优异的选择吸附性并遵循化学吸附过程。经过5个循环后吸附容量保持在37.21 mg·g^-1,锰溶损率降至0.34%。  相似文献   

12.
采用柠檬酸配合法合成了系列尖晶石富锂锂锰氧化物Li2O.nMnO2(n=1.75,2.0,2.25,2.5,3.0)。通过X射线衍射(XRD)和酸浸实验发现,350℃合成的Li2O.2.25MnO2具有纯相尖晶石锂锰氧化物结构,且在弱酸性介质中具有较高的锂溶出率和较低的锰溶损率。Li2O.2.25MnO2在酸浸之后转型为锂离子筛。XRD和扫描电子显微镜(SEM)分析发现锂离子筛能够保持尖晶石锂锰氧化物的结构和形貌。吸附实验表明,该锂离子筛在碱性含锂溶液中对Li+具有吸附性能,且吸附容量随着溶液温度和pH值的升高而增大,最高能达到40.14 mg.g-1。通过傅立叶红外光谱(FTIR)研究了锂离子筛的吸附机理,并用Langmuir模型描述了其在LiCl+LiOH溶液中的吸附行为。  相似文献   

13.
本实验室前期所制备的Li4Mn5O12超细粉末在卤水体系中对Li+具有较大的吸附容量和良好的选择性。但由于超细粉体的流动性和渗透性差,无法直接应用于固定床,需对粉末吸附材料进行成型造粒,以便于实际应用。本论文采用聚氯乙烯为粘结剂,制备出粒径约为2.0~3.5 mm的球形PVC-Li4Mn5O12,经盐酸处理后得到球形PVC-MnO2离子筛。并通过扫描电镜(SEM)、X射线衍射仪(XRD)、静态和动态连续锂吸附实验研究了球形离子筛形貌和锂离子吸附性能。结果表明,球形离子筛对Li+的吸附容量高达5.28 mmol.g-1,在混合溶液中对Li+具有良好的选择性,这对于在盐湖卤水或海水提锂具有重要的实用意义。  相似文献   

14.
锂钛复合氧化物锂离子电池负极材料的研究   总被引:17,自引:0,他引:17  
杨晓燕  华寿南  张树永 《电化学》2000,6(3):350-356
采用 3种化学方法合成锂钛复合氧化物 .应用X -射线衍射分析对其结构进行表征以及电化学性能测试 ,结果表明 :由Li2 CO3、TiO2 高温合成的锂钛复合氧化物为尖晶石结构的Li4Ti5 O12 .Li4Ti5 O12 电极在 1 .5V左右有一放电平台 ,充放电可逆性良好 ,即充电电压平台与此接近 ,且电极的比容量较大 ,循环性能良好 .以 0 .30mA·cm- 2 充放电时 ,首次放电容量可达 30 0mAh·g- 1,可逆比容量为 1 0 0mAh·g- 1,经多次充放电循环后 ,其结构仍保持稳定性 .试验电池测试表明 ,Li4Ti5 O12 可选作Li4Ti5 O12 /LiCoO2 锂离子电池的负极材料 .  相似文献   

15.
低温固相反应合成Li3V2(PO4)3正极材料及其性能   总被引:1,自引:1,他引:1  
利用V2O5·nH2O湿凝胶,LiOH·H2O,NH4H2PO4和C等作原料,通过低温固相还原反应在550 ℃焙烧12 h制备出Li3V2(PO4)3正极材料。采用XRD,SEM和电化学测试对Li3V2(PO4)3样品性能进行研究。XRD研究表明本法所合成的Li3V2(PO4)3同传统的高温固相反应法所合成的Li3V2(PO4)3一样同属于单斜晶系结构。SEM测试表明所合成的样品平均粒径大小约为0.5 μm且粒径分布较窄。电化学测试表明以0.2 C的倍率放电时,样品的首次放电容量为130 mAh·g-1,室温下循环30次后其比容量为124 mAh·g-1。  相似文献   

16.
采用扫描电子显微镜、X射线衍射和粉末微电极分别考察了TiO2粉末的形貌、结构以及氧化I-的光电化学行为.结果表明,TiO2粉末晶型为锐钛矿,粒径在100~200 nm范围内.在光照条件下,在TiO2半导体电极上电化学氧化I-生成I2的超电势数值降低约1 V.以TiO2/ITO和Li4Ti5O12分别作为正负极,电解液为碳酸丙烯酯(PC)+LiClO4+LiI,并以聚偏氟乙烯(PVDF)作为隔膜构成分隔式电解池,进行整体电解并结合紫外-可见光谱进行分析.结果表明,该装置在光照条件下电池充电电压比非光照条件下的充电电压降低约0.9 V,且充电效率接近100%.该光电化学装置是一种可以利用光能充电的二次锂离子电池.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号