首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
古宁宇  何兴华  李洋 《电化学》2013,(2):146-150
由LiH2PO4和FeC2O4.2H2O作原料、柠檬酸为碳源,用水溶-蒸发法制备了LiFePO4/C正极样品.采用X射线衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)分析、观察样品.用充放电曲线和电化学交流阻抗(EIS)谱图测试LiFePO4/C电极.结果表明,700℃焙烧的LiFePO4/C样品(碳量3.03%,by mass)结晶度高、无杂相、颗粒粒径100 nm,其表面包覆约5 nm碳层.该电极0.5C、2C、5C和10C(1C=170 mA.g-1)倍率放电,其比容量分别为148.2 mAh.g-1、142.4 mAh.g-1、127.4 mAh.g-1和108.5 mAh.g-1,循环寿命曲线稳定.  相似文献   

2.
张鹏  孔令斌  罗永春  康龙 《电化学》2012,(4):337-341
本文采用碳热还原法,以廉价的FeCl3.6H2O、LiOH.H2O和NH4H2PO4为原料,以淀粉为还原剂和碳源,经600℃烧结制备了LiFePO4/C复合材料,方法重现性好且易规模化生产.采用X射线衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)测试材料结构,观察材料形貌.结果表明,经600℃烧结10 h所得产物具有纯相的橄榄石型晶体结构,良好的结晶性和规整的球状形貌,粒径为60~100 nm.包覆LiFePO4晶粒的碳层厚度为2 nm左右,碳含量为5%(by mass).材料的振实密度高达1.3 g·cm-3,在0.2C倍率下首次放电比容量为162 mAh·g-1,在0.5C、1C、2C、5C和10C倍率下首次放电比容量分别为143、135、127、116和105 mAh·g-1,10C倍率下500周期循环,其比容量仍有81 mAh·g-1.  相似文献   

3.
以乙二胺四乙酸为配位剂采用水热法制备了棒状LiFePO4/C材料。采用X射线衍射、扫描电镜、透射电镜、循环伏安、交流阻抗和恒电流充放电测试等对材料进行表征。结果表明:乙二胺四乙酸对材料的形貌和电性能均有很大影响。通过加入乙二胺四乙酸,材料的形貌由不规则的颗粒变为棒状的颗粒且颗粒的厚度由140~200 nm减少至40~90 nm,材料的表面包覆约3.5nm的均匀碳层,且该材料极化较小且界面阻抗较低。0.1C放电比容量为167 mAh·g-1(接近理论容量170 mAh·g-1)。  相似文献   

4.
LiFePO4电极的倍率特性与材料的粒度和电子导电性有很大关系.采用共沉淀方法,调控预处理温度,将3种不同尺寸的FePO4前驱体通过表面修饰对-羟基苯甲酸的聚合物,可合成不同尺度的LiFePO4/C材料,分别为80 nm、200nm和1μm.纳米尺度LiFePO4-a/C电极,30C放电比容量达到了100 mAh·g-1,而微米级LiFePO4-c/C电极放电比容量仅为54mAh·g-1.均一碳包覆的LiFePO4/C电极表现出强抗氧化性,不仅提高其导电性,还可防止材料氧化.  相似文献   

5.
以Fe(NO3)3,LiNO3,NH4H2PO4和NaNO3为原料,采用简单的液相-碳热还原法合成Li0.97Na0.03FePO4/C复合正极材料.使用X射线衍射(XRD)、扫描电子显微镜(SEM)和充放电等测试技术研究了材料的结构及倍率充放电性能.通过循环伏安(CV)曲线和电化学阻抗谱(EIS)研究电极反应过程中的动力学特点.结果表明,Na掺杂形成了具有橄榄石结构的Li0.97Na0.03FePO4固溶体,并增大了晶格中Li+一维扩散通道,使LiFePO4/C的电荷转移电阻减小了约2/3,Li+扩散系数提高了3~4倍.因此,Li0.97Na0.03FePO4/C首次放电比容量在0.1 C和2 C倍率下分别达到152 mAh g-1和109 mAh g-1,比未掺杂的LiFePO4/C的放电比容量分别提高了4.83%和62.69%.  相似文献   

6.
微乳液法合成LiFePO4 / C正极材料及其电化学性能   总被引:4,自引:0,他引:4  
本文采用微乳液方法合成了纳米LiFePO4 / C正极材料。制备样品分别用XRD和SEM进行表征,充放电测试其电化学性能。600 ℃制备样品为单一物相,平均粒径90 nm,在室温2.0~4.0 V (vs Li) 放电电压范围和15 mA·g-1放电速率下,首次放电容量达到159 mAh·g-1。制备样品同样展现良好的循环性能。在15 mA·g-1速率下40次循环后,制备样品放电容量仍保持首次放电容量的98.9%。优异的电化学性能得益于样品颗粒的纳米尺寸、均匀分布以及表面碳层包覆提高了活性材料的电子电导率。  相似文献   

7.
以乙二胺四乙酸为配位剂采用水热法制备了棒状LiFePO4/C材料。采用X射线衍射、扫描电镜、透射电镜、循环伏安、交流阻抗和恒电流充放电测试等对材料进行表征。结果表明:乙二胺四乙酸对材料的形貌和电性能均有很大影响。通过加入乙二胺四乙酸, 材料的形貌由不规则的颗粒变为棒状的颗粒且颗粒的厚度由140~200 nm减少至40~90 nm, 材料的表面包覆约3.5 nm的均匀碳层, 且该材料极化较小且界面阻抗较低。0.1C放电比容量为167 mAh·g-1(接近理论容量170 mAh·g-1)。  相似文献   

8.
建立了磷酸铁锂(LiFePO4)电极材料放电曲线的阻抗模型.将不同倍率放电的电位分为欧姆电位降、电荷转移电位降与扩散阻抗电位降三部分,以电极交流阻抗谱图结合理论分析,推导出不同倍率电极电位的表达式.模拟结果显示,拟合值与实验值吻合较好.  相似文献   

9.
锂离子电池正极材料掺杂LiFePO4的报道已很多,而涉及掺杂LiFePO4的表面成分及结构的研究仍很少见.本文采用溶剂热法一步制得了表面富Al的LiFePO4正极材料.TEM测试证实LiFePO4的表面形成均匀的无定型包覆层;俄歇电子能谱和软X射线吸收谱均表明其表面的包覆层为部分Al替代Fe的LiFe1-x Alx PO4.表面富Al(x=0.02)的LiFePO4显示了较好的电化学倍率性能和低温性能,-10oC下充放电,电压范围2.2~4.2 V、0.1C倍率,电极的放电比容量为98 mAh·g-1,0.5C倍率放电比容量可达70 mAh·g-1.这归因于Al的加入改变了材料体相及表面的电子结构,增加了体相电子的传导及表面离子的传导.  相似文献   

10.
采用Li_2CO_3与Li OH·H_2O为复合锂源制备LiFePO_4/C材料,同时优化了材料中的碳含量。由于氢氧化锂的熔点低于碳酸锂,在同样的烧结温度下,采用复合锂源可以获得更佳的熔融状态,在高温合成过程中使锂离子具有更高的扩散性,能够更顺利地得到高纯度的LiFePO_4晶相。通过优化碳包覆量达到提高导电性与控制晶粒尺寸的目的,使材料晶相结构完整,纯度高,表现出优秀的加工性能与电化学性能。所制得的LiFePO_4/C材料放电克容量达到158.2 m Ah·g~(-1),在全电池中经过100 d存储后容量保持率仍然高于94.0%,具有优异的长期可靠性。  相似文献   

11.
模板法合成有孔的锂离子电池正极材料LiFePO_4/C   总被引:2,自引:2,他引:0  
<正>橄榄石型LiFePO4因其具有170mAh·g-1的理论容量,3.4V的放电平台,良好的循环性能和热稳定性能,无毒和价格低廉等优点,自1997年被Goodenough等[1]首次报道以来受到人们广泛关注[2-3],并被认为在动力电池应用上极有潜力[4]。但此材料的电导率低及扩散性能差[1],限制其大规模应用。针对上述缺点研究人员对LiFePO4的改性研究主要包括:包覆碳[5-7]和金属粉末[8]、掺杂金属离  相似文献   

12.
采用喷雾干燥-高温固相法制备纳米LiFePO4与LiFePO4/C正极材料,用X-射线衍射,扫描电镜等对合成材料进行了表征,并对以LiFePO4为正极的电池进行了电化学性能测试。结果表明:材料合成最佳煅烧温度为600 ℃;合成过程中由于碳对LiFePO4晶型的生长有一定的抑制作用,相对于纯LiFePO4材料,LiFePO4/C材料粒径更小;并且,在此最佳合成温度下合成的LiF  相似文献   

13.
纳米磷酸铁锂的制备及电化学性能研究   总被引:1,自引:3,他引:1  
利用液相沉淀法合成了纳米级磷酸铁,并以此为铁源,通过碳热还原技术制备了粒径均匀的纳米级球形LiFePO4/C正极材料。经热分析(TG-DSC)、X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)以及恒电流充放电测试,研究了纳米磷酸铁及纳米磷酸铁锂材料的结构、形貌以及电化学性能。实验结果表明材料的首次放电比容量达161.8 mAh.g-1(0.1C),库仑效率为98.3%;室温下在0.2C、0.5C、1C、2C及5C倍率充放电其首次放电比容量分别为156.5、144、138.9、125.6和105.7 mAh·g-1,材料具有较好的倍率性能。  相似文献   

14.
LiFePO4:水热合成及性能研究   总被引:4,自引:0,他引:4  
LiFePO4是继尖晶石型LiMn2O4[1]之后的一种新型锂离子电池正极材料,其具有结构稳定,工作电位适中(3.45VvsLi/Li )、可逆容量高、无毒价廉等优点,被认为是极具发展潜力的锂离子电池正极材料[2]。有关LiFePO4的结构[3]和性能[4]研究引人关注。目前,LiFePO4主要是采用高温固相法[5]来合成,尽管简单方便,但由于该传统方法的局限性,很难得到纯度高、粒径小、电性能好的LiFePO4。因此人们尝试用微波加热[6]、溶胶-凝胶[7]、共沉淀[8]等制备方法,希望得到理想的LiFePO4材料,但是采用水热法制备LiFePO4鲜见报道。本文采用水热法制备了纯…  相似文献   

15.
以LiH2PO4和廉价的Fe2O3为原料,葡萄糖为有机碳源,通过选择高价V5+进行铁位掺杂固相合成碳包覆复合改性的LiFe1-xVxPO4/C(x=0,0.01,0.03,0.05,0.07,0.1)材料。700℃下处理得到结晶性好、电化学性能良好、较高振实密度ρ=1.2 g·cm-3的材料。X射线光电子能谱(XPS)测试结果表明掺入的钒为高价态V5+,能产生更多的过剩电子,从而提高了电子电导率,且V5+的掺入没有改变Fe的价态。交流阻抗测试结果进一步证明了V5+的掺入降低了电荷迁移阻抗,提高了材料的电子电导率。其中优化的材料LiFe0.95V0.05PO4显示了不同倍率下良好的充放电比容量,在0.1C、1C、2C和5C倍率的放电比容量分别为155、146.5、135.3和125.9 mAh·g-1,5C循环500次后容量为119.5 mAh·g-1,容量保持率为94.9%,材料循环性能较好,具有良好的实际应用价值。  相似文献   

16.
以乙二醇为溶剂,采用溶剂热法一步合成圆饼状LiFePO_4,然后以葡萄糖为碳源与合成的LiFePO_4前躯体高温烧结得到碳包覆的LiFePO_4/C复合材料,其振实密度高达1.3 g·cm~(-3)。采用X射线衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对LiFePO_4/C复合材料进行了物相和形貌表征,研究结果表明制备得到的LiFePO_4呈圆饼状,且生成的圆饼是由单晶LiFePO_4纳米片堆积而成。此外,LiFePO_4颗粒表面碳层包覆均匀。将制备的LiFePO_4/C用作锂离子电池正极材料,电化学性能测试表明其具有高的充放电比容量(在0.1C时放电,其初始放电比容量为157.7 mAh·g~(-1))与良好的循环性能(500次循环后容量保持率为82.4%)。  相似文献   

17.
以乙二醇为溶剂,采用溶剂热法一步合成圆饼状LiFePO4,然后以葡萄糖为碳源与合成的LiFePO4前躯体高温烧结得到碳包覆的LiFePO4/C复合材料,其振实密度高达1.3 g·cm-3。采用X射线衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对LiFePO4/C复合材料进行了物相和形貌表征,研究结果表明制备得到的LiFePO4呈圆饼状,且生成的圆饼是由单晶LiFePO4纳米片堆积而成。此外,LiFePO4颗粒表面碳层包覆均匀。将制备的LiFePO4/C用作锂离子电池正极材料,电化学性能测试表明其具有高的充放电比容量(在0.1C时放电,其初始放电比容量为157.7 mAh·g-1)与良好的循环性能(500次循环后容量保持率为82.4%)。  相似文献   

18.
采用柠檬酸辅助水热法合成了高分散性树叶状LiFePO4/C复合正极材料。利用X射线衍射、傅里叶红外光谱、扫描电镜、高分辨率透射电镜和选区电子衍射分析了材料的形貌结构。结果表明,柠檬酸对树叶状LiFePO4/C复合材料的形成具有促进作用。该材料的最大暴露晶面为(010)晶面,且分散性较好。与颗粒状LiFePO4/C材料相比,该材料呈现出更高的放电比容量和更好的倍率性能,在0.1C和5C倍率下,放电比容量分别为158和126mAh·g-1,其原因是由于锂离子沿[010]方向的扩散距离缩短,从而使锂离子扩散系数显著增大。  相似文献   

19.
以LiH2PO4和廉价的Fe2O3为原料,葡萄糖为有机碳源,通过选择高价V5+进行铁位掺杂固相合成碳包覆复合改性的LiFe1-xVxPO4/C(x=0,0.01,0.03,0.05,0.07,0.1)材料。700℃下处理得到结晶性好、电化学性能良好、较高振实密度ρ=1.2g·cm-3的材料。X射线光电子能谱(XPS)测试结果表明掺入的钒为高价态V5+,能产生更多的过剩电子,从而提高了电子电导率,且V5+的掺入没有改变Fe的价态。交流阻抗测试结果进一步证明了V5+的掺入降低了电荷迁移阻抗,提高了材料的电子电导率。其中优化的材料LiFe0.95V0.05PO4显示了不同倍率下良好的充放电比容量,在0.1C、1C、2C和5C倍率的放电比容量分别为155、146.5、135.3和125.9mAh·g-1,5C循环500次后容量为119.5mAh·g-1,容量保持率为94.9%,材料循环性能较好,具有良好的实际应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号