首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A single-drop microextraction (SDME) method and gas chromatography with mass spectrometry detection have been developed for the determination of acidic herbicides in water. The analytes were extracted from a 3 mL sample solution using 4 microL of hexyl acetate. After extraction, derivatization was carried out inside a glass microvial (1.1mm i.d.) using pentafluorobenzyl bromide (PFBBr). Triethylamine (TEA) was used as the reaction catalyst. The influence of derivatization reagent volume, catalyst amount, derivatization time and temperature on the yield of the in-microvial derivatization was investigated. Derivatization reaction was performed using 0.3 microL of PFBBr and 0.4 microL of TEA (10%, v/v in toluene) at 100 degrees C during 5 min. Also, the effects of different experimental SDME parameters such as selection of organic solvent, sample pH, addition of salt, extraction time and temperature of extraction were studied. Analytical parameters such as enrichment factor, precision, linearity and detection limits were also determined. The enrichment factors were between 83 and 157. The limits of detection (LOD) were in the range 1.2-7 ng/L (S/N=3). The relative standard deviations obtained were below 10.1% (n=5).  相似文献   

2.
Exposing a microlitre organic solvent drop to the headspace of an aqueous sample contaminated with ten chlorobenzene compounds proved to be an excellent preconcentration method for headspace analysis by gas chromatography-mass spectrometry (GC-MS). The proposed headspace single-drop microextraction (SDME) method was initially optimised and the optimum experimental conditions found were: 2.5 microl toluene microdrop exposed for 5 min to the headspace of a 10 ml aqueous sample containing 30% (w/v) NaCl placed in 15 ml vial and stirred at 1000 rpm. The calculated calibration curves gave a high level of linearity for all target analytes with correlation coefficients ranging between 0.9901 and 0.9971, except for hexachlorobenzene where the correlation coefficient was found to be 0.9886. The repeatability of the proposed method, expressed as relative standard deviation varied between 2.1 and 13.2% (n = 5). The limits of detection ranged between 0.003 and 0.031 microg/l using GC-MS with selective ion monitoring. Analysis of spiked tap and well water samples revealed that matrix had little effect on extraction. A comparative study was performed between the proposed method, headspace solid-phase microextraction (SPME), solid-phase extraction (SPE) and EPA method 8121. Overall, headspace SDME proved to be a rapid, simple and sensitive technique for the analysis of chlorobenzenes in water samples, representing an excellent alternative to traditional and other, recently introduced, methods.  相似文献   

3.
Water contamination due to the wide variety of pesticides used in agriculture practices is a global environmental pollution problem. Analytical methods with low quantification limits are necessary. The application of a new extraction technique, solvent drop microextraction (SDME), followed by gas chromatography with a nitrogen-phosphorus detector, was assessed for determining carbamates and organophosphorus pesticides in natural water. Experimental parameters which control the performance of SDME such as selection of microextraction solvent, optimization of organic drop volume, effects of sample stirring, salt addition, and, finally, sorption time profiles were studied. Once SDME was optimized, analytical parameters such as linearity (r 2>0.99), precision (<13%), and detection limits (0.2 to 5 μg/L), plus matrix effects were evaluated (no matrix effects were found). SDME is a dynamic technique able to extract pesticides from water in 14 min; the use of organic solvents and water samples for SDME is negligible compared to other extraction techniques.  相似文献   

4.
Water contamination due to the wide variety of pesticides used in agriculture practices is a global environmental pollution problem. The 98/83 European Directive requires the measurement of pesticides residues at a target concentration of 1.0 microg/l in surface water and 0.1 microg/l in drinking water. In order to reach the level of detection required, efficient extraction techniques are necessary. The application of a new extraction technique: single-drop microextraction (SDME), followed by gas chromatography with electron-capture detection, was assessed for determining alpha-endosulfan and beta-endosulfan in water samples. Experimental parameters which control the performance of SDME, such as selection of microextraction solvent and internal standard, optimization of organic drop volume, effects of sample stirring, temperature and salt addition, and sorption time profiles were studied. Once SDME was optimized, analytical parameters such as linearity, precision, detection and quantitation limits, plus matrix effects were evaluated. The SDME method was compared with solid-phase microextraction and solid-phase extraction with the aim of selecting the most appropriate method for a certain application.  相似文献   

5.
Single-drop microextraction (SDME) has been coupled with gas chromatography–mass spectrometry to enable rapid and simple simultaneous analysis of carbamate and organophosphorus pesticides (OPP). The significant conditions affecting SDME performance (microextraction solvent, extraction time, solvent volume, sample pH, stirring speed, and ionic strength) were studied and optimized. Extraction was achieved by suspending a 1.5-μL drop of toluene from the tip of a microsyringe directly immersed in 5-mL aqueous donor solution at pH 5 stirred at 800 rpm. The dynamic linear range and detection limits of the method were evaluated by analysis of water samples spiked with carbamate pesticides and OPP. Under selected ion-storage mode, very low detection limits (0.02–0.50 ng mL?1) and good linearity (0.5–200 ng mL?1) were achieved. When SDME was applied to analysis of pesticides in natural water samples good recoveries (89.4–102.1%) were obtained. Inter-day and intra-day RSD of most results were below 5.4 and 6.1%, respectively. The method proved to be a rapid and simple tool for extraction and analysis of these pesticides in water samples.  相似文献   

6.
In the present work the single-drop microextraction (SDME) technique coupled with GC-NPD and GC-ECD was evaluated for the determination of multi-class pesticides in vegetables. The donor sample solution preparation was optimized by testing different mixtures of solvents and dilutions with water. The SDME procedure was optimized by controlling drop organic solvent, drop volume, agitation, and exposure time. The optimum sample preparation was achieved with the use of a mixture of acetone/H(2)O (10/90, v/v) in donor sample solution preparation and the consequent SDME using a toluene drop under mild stirring for 25min. The efficiency of the extraction process was studied in fortified tomato and courgette samples and matrix effects were further estimated. The proposed method showed good linearity, limits of detection at the sub-microgkg(-1) level and high precision (RSD <15%) and was applied with success in real vegetable samples showing that SDME can be a promising way for sample preparation in pesticide residue analysis.  相似文献   

7.
Xiao Q  Hu B  Yu C  Xia L  Jiang Z 《Talanta》2006,69(4):848-855
A single-drop microextraction (SDME) procedure was developed for the analysis of organophosphorus pesticides (OPPs) in water and fruit juice by gas chromatography (GC) with flame photometric detection (GC-FPD). The significant parameters affecting the SDME performance such as selection of microextraction solvent, solvent volume, extraction time, stirring rate, sample pH and temperature, and ionic strength were studied and optimized. Two types of SDME mode, static and cycle-flow SDME, were evaluated. The static SDME procedure provided more sensitive analysis of the target analytes. Therefore, static SDME with tributyl phosphate (TBP) as internal standard was selected for the real sample analysis. The limits of detection (LODs) in water for the six studied compounds were between 0.21 and 0.56 ng/mL with the relative standard deviations ranging from 1.7 to 10.0%. Linear response data was obtained in the concentration range of 0.5-50 ng/mL (except for dichlorvos 1.0-50 ng/mL) with correlation coefficients from 0.9995 to 0.9999. Environmental water sample collected from East Lake and fruit juice samples were successfully analyzed using the proposed method, but none of the analytes in both lake water and fruit juice were detected. The recoveries for the spiked water and juice samples were from 77.7 to 113.6%. Compared with the conventional methods, the proposed method enabled a rapid and simple determination of organophosphorus pesticides in water and fruit juice with minimal solvent consumption and a higher concentration capability.  相似文献   

8.
A new method based on combination of solid- and liquid-phase microextraction was developed. For the first time, porous flower-like silica microstructures with nanometric layers were created on the surface of the stainless steel wire by a new facile hydrothermal process. The fiber, coated with a suitable organic solvent, was applied for microextraction of some organophosphorus pesticides from aqueous samples followed by gas chromatography-nitrogen phosphorous detection. Method detection limits were between 0.6 and 3 ng L−1. Relative standard deviations for intra- and inter-day precision were 4.4–7.3% and 5.1–7.8%, respectively. Fiber-to-fiber reproducibility for five prepared fibers was 6.3–8.4%. Tap, river and waste water samples were analyzed for evaluation of the method in real sample analysis. Relative recoveries for spiked tap, river and waste water samples were in the range of 94–101%, 89–97% and 82–103%, respectively. In addition, the method was compared with two commercial solid-phase microextraction (SPME) fibers, single drop microextraction (SDME) and liquid-phase microextraction (LPME). The present method showed higher extraction efficiency as compared with SDME, LPME and commercial SPME fibers.  相似文献   

9.
Organophosphorous pesticides (OPPs) including dichlorvos, diazinon, malathion, phenamiphos and chlorpyrifos, in water samples were extracted by pneumatic nebulization single‐drop microextraction (PN‐SDME) and then determined by gas chromatography–mass spectrometry (GC‐MS). Experimental parameters affecting the performances of PN‐SDME, such as flow rate of carrier gas, extraction time and microdrop volume, were examined and optimized. The limits of detection for the analytes were in the range of 0.0014–0.0019 μg/mL. The linear range was 0.0050–0.50 μg/mL, except dichlorvos (0.0070–0.50 μg/mL). Water samples were analyzed and the recoveries of the analytes in the spiked water samples were from 75.2 to 105.3%. The relative standard deviations were lower than 12.7%.  相似文献   

10.
In this study, a new method for the determination of organophosphorus pesticides (OPPs) (ethoprophos, diazinon, parathion methyl, fenitrothion, malathion, isocarbophos and quinaphos) in orange juice was developed. Single-drop microextraction (SDME) parameters, such as organic solvent, drop volume, agitation rate, extraction time, and salt concentration were optimized through analysis of OPPs in fortified water. The orange juice was simply centrifuged and diluted with water, extracted by SDME and analyzed by gas chromatography (GC) equipped with a flame photometric detection (FPD). Fortification tests were conducted for concentrations between 10 and 500 microg/L; mean relative recoveries for each pesticide were all above 76.2% and below 108.0%. Limits of detection of the method for orange juice were below 5 microg/L for all target pesticides. The repeatability of the proposed method, expressed as relative standard deviation varied between 4.6 and 14.1% (n=5). The proposed method is acceptable in the analysis of OPPs pesticides in juice matrices.  相似文献   

11.
In this article, a new method using single-drop microextraction (SDME) and gas chromatography micro-electron capture detection (GC-μECD) for the determination of chloroacetanilide herbicides (alachlor, acetochlor, metolachlor, pretilachlor and butachlor) residues was developed. The effects of SDME parameters such as extraction solvent, stirring rate, ionic strength, microdrop volume and extraction time were optimized. The optimum experimental conditions found were: 1.6 μl toluene microdrop, 5 ml water sample, 400 rpm stirring rate, 15 min extraction time and no salt addition. Analytical parameters such as linearity, repeatability and limit of detection were also evaluated. The proposed method was proved to be a simple and rapid analytical procedure for chloroacetanilide herbicides in water with limits of detection 0.0002–0.114 μg/l. The relative recoveries range from 80% to 102% for all the target analytes, with the relative standard deviations varying from 3.9% to 11.7%.  相似文献   

12.
A rapid, simple, sensitive, and effective quantitative method for simultaneous determination of cationic surfactants (CS(+)) from river and municipal wastewater by direct combination of single-drop microextraction (SDME) with atmospheric pressure (AP)-MALDI mass spectrometry has been successfully demonstrated without the requirements of tedious sample pre- or post-treatment or separation by high-performance liquid chromatography (HPLC), gas chromatography (GC), and capillary electrophoresis (CE). This quantitative method can greatly enhance the signal-to-noise ratio for analysis of small molecules of CS(+) owing to the strong suppression of matrix ions by the analytes. In addition, SDME assisted in the isolation and preconcentration of CS(+) from water samples, which could effectively reduce the background interferences from the matrices present in waste and river water. The SDME conditions were optimized for achieving high extraction efficiency of CS(+) from aqueous samples, in terms of solvent selection, stirring speed, extraction time, exposure volume of acceptor phase, and salt addition. The enrichment factors for CS(+) were found to be 40-64-folds for 7 min of extraction time with no salt addition and at room temperature. This method was found to yield a linear calibration curve in the concentration range from 50 to 1500 microg/l CS(+) with a limit of detection (LOD) of 10 microg/l. The relative recoveries in river and municipal wastewater were found to be 93.8-103.6% and 91.0-98.7%, respectively. These results indicate that the combination of SDME with AP-MALDI/MS is effective for the simultaneous determination of CS(+) from river and municipal wastewater. In addition, a comparison of enrichments and LOD values for this method with hollow-fiber liquid phase microextraction (HF-LPME) was also demonstrated. The present approach is easy to operate, rapid, sensitive, and suitable for high-throughput of analysis.  相似文献   

13.
Single-drop microextraction (SDME) followed by gas chromatography–mass spectrometry detection was used for the determination of some carbamate pesticides in water samples. The studied pesticides were thiofanox, carbofuran, pirimicarb, methiocarb, carbaryl, propoxur, desmedipham and phenmedipham. Two alternative sample introduction methods have been examined and compared; SDME followed by cool on-column injection (without derivatization) and SDME followed by in-microvial derivatization and splitless injection. Acetic anhydride was used as derivatization reagent. Parameters that affect the derivatization reaction yield and the extraction efficiency of the SDME method were studied and optimized. The analytical performances and possible applications of both approaches were investigated. Relative standard deviations for the studied compounds ranged from 3.2 to 8.3%. The detection limits obtained by the derivatization method were found to be in the range 3–35 ng/L. Using cool on-column injection (without derivatization), the detection limits were between 30 and 80 ng/L.  相似文献   

14.
Trace analysis of phenolic compounds in water was performed by coupling single-drop microextraction (SDME) with in-syringe derivatization of the analytes and GC-MS analysis. The analytes were extracted from a 3ml sample solution using 2.5microl of hexyl acetate. After extraction, derivatization was carried out in syringe barrel using 0.5microl of N,O-bis(trimethylsilyl)acetamide. The influence of derivatizing reagent volume, derivatization time and temperature on the yield of the in-syringe silylation was investigated. Derivatization reaction is completed in 5min at 50 degrees C. Experimental SDME parameters, such as selection of organic solvent, sample pH, addition of salt, extraction time and temperature of extraction were studied. Analytical parameters, such as enrichment factor, precision, linearity and detection limits were also determined. The limits of detection were in the range of 4-61ng/l (S/N=3). The relative standard deviations obtained were between 4.8 and 12% (n=5).  相似文献   

15.
Liquid microextraction employing solidification of the floating organic droplet, with vortexing and heating to optimize extraction efficiency, was developed for the determination of seven insecticides in fruit juice, vegetables, and agricultural runoff water. The extracts were analyzed by gas chromatography with both flame ionization and mass spectrometry detection for the determination of chlorpyrifos, prothiofos, profenofos, ethion, λ‐cyhalothrin, permethrin, and cypermethrin, respectively. Using 20 μL of 1‐undecanol in 10 mL of aqueous solution containing 1% w/v sodium chloride provided preconcentration factor of 500. The enrichment factor of the analytes was in the range of 355 to 509 with extraction recovery >71%. The linearity ranges were 4–200 μg/kg for gas chromatography with flame ionization detection and 1–100 μg/kg for gas chromatography with mass spectrometry, with limits of detection ranging from 0.04 to 1.2 μg/kg, which are lower than the international maximum residue limits for vegetables and fruit juice. Intra‐day and inter‐day precisions are less than 5.4 and 7.0% relative standard deviation, respectively. The method was successfully applied to the determination of the seven insecticides in samples of vegetables, fruit juice and agricultural runoff, with recoveries ranging from 61.7 to 120.8%. The extraction method is simple, efficient and environmentally friendly.  相似文献   

16.
The performance of single-drop microextraction (SDME), coupled with gas chromatography/mass spectrometry, was assessed for the determination of tributyltin compounds in water and solid samples. Experimental parameters impacting the performance of SDME, such as microextraction solvent and sampling and stirring time, were investigated. Analytical results obtained by SDME were compared with those generated by conventional solid phase microextraction (SPME) and liquid-liquid extraction (LLE) for the determination of TBT in PACS-2 sediment certified reference material (CRM).  相似文献   

17.
A rapid and simple single-drop microextraction method (SDME) has been used to preconcentrate eighteen organochlorine pesticides (OCPs) from water samples with a complex matrix. Exposing two microlitre toluene drop to an aqueous sample contaminated with OCPs proved an excellent preconcentration method prior to analysis by gas chromatography-mass spectrometry (GC-MS). A Plackett-Burman design was used for screening and a central composite design for optimizing the significant variables in order to evaluate several possibly influential and/or interacting factors. The studied variables were drop volume, aqueous sample volume, agitation speed, ionic strength and extraction time. The optimum experimental conditions of the proposed SDME method were: 2 μL toluene microdrop exposed for 37 min to 10 mL of the aqueous sample containing 0% w/v NaCl and stirred at 380 rpm.The calculated calibration curves gave high-level linearity for all target analytes with correlation coefficients ranging between 0.9991 and 0.9999. The repeatability of the proposed method, expressed as relative standard deviation, varied between 5.9 and 9.9% (n = 8). The detection limits were in the range of 0.022-0.101 μg L−1 using GC-MS with selective ion monitoring. The LOD values obtained are able to detect these OCPs in aqueous matrices as required by EPA Method 625. Analysis of spiked effluent wastewater samples revealed that the matrix had no effect on extraction for eleven of the analytes but exerted notable effect for the other analytes.  相似文献   

18.
The application of single-drop microextraction (SDME) followed by gas chromatography/chemical ionization mass spectrometry (GC/CI-MS) was investigated for the determination of anisaldehyde isomers in human urine and blood serum. The effects of extraction solvent, sample agitation rate, salt addition, sampling time and temperature on the extraction efficiency were examined and optimized. Analytical parameters such as linearity, reproducibility, detection limit and relative recovery were evaluated under the optimized experimental conditions. Good reproducibilities of replicate extractions (n = 5) were obtained, with relative standard deviation (RSD) values below 6%. The limits of detection (LOD) using an extraction time of 5 min were found to be in the range 2-5 ng/mL under the selected ion monitoring (SIM) mode of GC/MS. Recoveries of 82-98% were achieved after 5 min extraction.  相似文献   

19.
建立了高效液相色谱-紫外检测(HPLC-UV)同时测定5种食品模拟物(10%(v/v)乙醇、20%(v/v)乙醇、50%(v/v)乙醇、3%(w/v)乙酸和橄榄油)中偏苯三甲酸、偏苯三甲酸酐、间苯二甲酰氯、间苯二甲酸、对苯二甲酰氯、邻苯二甲酸、对苯二甲酸的特定总迁移量(SML(T))的方法。用食品模拟物浸泡待测样品,冷却至室温并混匀,水基食品模拟物经亲水性聚四氟乙酸针头过滤器过滤后进样;橄榄油用0.1%(w/v)乙酸铵水溶液提取后,下层清液用亲水性聚四氟乙烯针头过滤器过滤后进样。用Synergi Polar-RP色谱柱(250 mm×4.6 mm, 4 μm)分离,梯度洗脱,检测波长为232 nm。5种食品模拟物中的定量限为0.1~0.2 mg/kg;水基食品模拟物在0.5~12 mg/L、橄榄油食品模拟物在0.5~12 mg/kg范围内线性关系良好(r2 > 0.99991); 1.25、2.5、6.25 mg/kg水平的加标回收率为94.3%~105%,相对标准偏差为0.1%~2.3%。结果表明,该方法的色谱分离和线性关系较好,回收率和准确度高,完全满足欧盟(EU)No 10/2011法规附表2中7种苯多酸及其衍生物的SML(T)的限量要求,并已应用于实际样品的检测。  相似文献   

20.
环境水样中百菌清残留的单滴微萃取-反相液相色谱测定   总被引:6,自引:1,他引:6  
应用单滴微萃取(SDME)-反相液相色谱(RPLC)检测了环境水样中的百菌清残留.优化了单滴微萃取条件:环己烷萃取剂6 μL、单滴体积2 μL、搅拌速率350 r/min、萃取时间40 min、水溶液温度35 ℃、无盐度.水样经单滴微萃取后,使用Hypersil C18柱反相液相色谱分离测定百菌清.反相液相色谱条件:100%甲醇流动相、流速1.0 mL/min、柱温25 ℃、224 nm检测.方法的线性范围、检出限、相对标准偏差和富集倍数分别为1.0 ~50 μg/L、0.02 μg/L、6.1%和427倍.采用该法对环境水样中的百菌清残留进行了测定,环境水样的加标回收率为98% ~106%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号