首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
应用拉曼镊子研究了来自同一亚种的两个苏云金芽孢杆菌(Bacillus thuringiensis,Bt)菌株的单个伴孢晶体蛋白的拉曼光谱。一束30mW、785nm的近红外激光导入倒置显微镜,形成光镊,俘获水溶液中的单个伴孢晶体蛋白,同时收集被俘伴孢晶体蛋白的拉曼信号。结果表明,单个晶体的拉曼光谱反映了晶体蛋白的分子结构和蛋白组成,得到的拉曼光谱信号更清晰、更灵敏。平均光谱和主成分分析均显示,同一亚种的H7、D4菌株的晶体蛋白的拉曼光谱比较接近。但在同一菌株内有两类不同的伴孢晶体存在,得到了群体分析方法难以得到的信息。本方法不需要复杂的纯化伴孢晶体过程,直接俘获单个伴孢晶体并收集其拉曼光谱,既可以得到群体伴孢晶体的信息,更可以得到群体内每个晶体蛋白之间的信息。  相似文献   

2.
Near-infrared (NIR) Raman spectroscopy was used to measure spectra of dried human blood samples from multiple donors. Two major questions addressed in this paper involve the influence of sample heterogeneity and potential Raman spectral variations that could arise between different donors of blood. Advanced statistical analysis of spectra obtained from multiple spots on dry samples showed that dry blood is chemically heterogeneous, and its Raman spectra could be presented very well as a linear combination of a fluorescent background and two Raman spectroscopic components that are dominated by hemoglobin and fibrin, respectively. Each sample Raman spectrum contains the same major peaks, but the relative contribution of the hemoglobin and fibrin components varies with the donor. Therefore, no single spectrum could adequately represent an experimental Raman spectrum of dry blood in a quantitative way, but rather the combination of hemoglobin and fibrin spectral components could be considered to be a spectroscopic signature for blood. This proof-of-concept approach shows the potential for Raman spectroscopy to be used in forensic analysis to identify an unknown substance such as blood.  相似文献   

3.
The Raman spectrum from thin films of amorphous ice has been obtained by using a new laser beam trapping technique. Both the OH-stretching region of the spectrum and the always present intense scattering background have been interpreted.  相似文献   

4.
The diagnostic ability of optical spectroscopy techniques, including near-infrared (NIR) Raman spectroscopy, NIR autofluorescence spectroscopy and the composite Raman and NIR autofluorescence spectroscopy, for in vivo detection of malignant tumors was evaluated in this study. A murine tumor model, in which BALB/c mice were implanted with Meth-A fibrosarcoma cells into the subcutaneous region of the lower back, was used for this purpose. A rapid-acquisition dispersive-type NIR Raman system was employed for tissue Raman and NIR autofluorescence spectroscopic measurements at 785-nm laser excitation. High-quality in vivo NIR Raman spectra associated with an autofluorescence background from mouse skin and tumor tissue were acquired in 5 s. Multivariate statistical techniques, including principal component analysis (PCA) and linear discriminant analysis (LDA), were used to develop diagnostic algorithms for differentiating tumors from normal tissue based on their spectral features. Spectral classification of tumor tissue was tested using a leave-one-out, cross-validation method, and the receiver operating characteristic (ROC) curves were used to further evaluate the performance of diagnostic algorithms derived. Thirty-two in vivo Raman, NIR fluorescence and composite Raman and NIR fluorescence spectra were analyzed (16 normal, 16 tumors). Classification results obtained from cross-validation of the LDA model based on the three spectral data sets showed diagnostic sensitivities of 81.3%, 93.8% and 93.8%; specificities of 100%, 87.5% and 100%; and overall diagnostic accuracies of 90.6%, 90.6% and 96.9% respectively, for tumor identification. ROC curves showed that the most effective diagnostic algorithms were from the composite Raman and NIR autofluorescence techniques.  相似文献   

5.
Shaofei Xie  Liyan Yu 《Talanta》2009,80(2):895-902
Near infrared spectroscopy (NIR) contains excessive background noise and weak analytical signals caused by near infrared overtones and combinations. That makes it difficult to achieve quantitative determinations of low concentration samples by NIR. A simple chemometric approach has been established to modify the noise frequency spectrum to improve NIR determinations. The proposed method is to multiply one Savitzky-Golay filtered NIR spectrum with another reference spectrum added with thermal noises before the other Savitzky-Golay filter. Since Savitzky-Golay filter is a kind of low-pass filter and cannot eliminate low frequency components of NIR spectrum, using one step or two consecutive Savitzky-Golay filter procedures cannot improve the determination of NIR greatly. Meanwhile, significant improvement is achieved via the Savitzky-Golay filtered NIR spectrum processed with the multiplication alteration before the other Savitzky-Golay filter. The frequency range of the modified noise spectrum shifts toward higher frequency regime via multiplication operation. So the second Savitzky-Golay filter is able to provide better filtering efficiency to obtain satisfied result. The improvement of NIR determination with tailoring noise frequency spectrum technique was demonstrated by both simulated dataset and two measured NIR spectral datasets. It is expected that noise frequency spectrum technique will be adopted mostly in applications where quantitative determination of low concentration sample is crucial.  相似文献   

6.
Both photoswitchable fluorescent nanoparticles and photoactivatable fluorescent proteins have been used for super-resolution far-field imaging on the nanometer scale, but the photoactivating wavelength for such photochemical events generally falls in the near-UV (NUV) region (<420 nm), which is not preferred in cellular imaging. However, using two near-IR (NIR) photons that are lower in energy, we can circumvent such problems and replace NUV single-photon excitations (e.g., 390 nm) with NIR two-photon excitations (e.g., 780 nm). Thus, we have demonstrated that alternating 780 nm NIR two-photon and 488 nm single-photon excitations induces reversible on-off fluorescence switching of immunotargeted nanoparticles in the human breast cancer cell line SK-BR-3. Herein, two-photon absorption not only caused spiropyran-merocyanine photoisomerization within the particles but also imparted red fluorescence. In comparison with single-photon NUV excitations, two-photon NIR laser excitations can potentially reduce absorption-related photodamage to living systems because cellular systems absorb much more weakly in the NIR.  相似文献   

7.
Line-focus Raman microscope system was designed and constructed for high speed quantitative analysis of Raman spectral maps. Laser line generator lens was used for formation of homogeneous laser power distribution thought the line. Three-dimensional Raman maps of mouse skin were obtained using point and line illumination modes. It was shown that laser line illumination can provide Raman spectrum with signal to noise ratio comparable to point illumination mode. The speed of scanning in line-focus mode achieved is two orders of magnitude faster compared to the point illumination mode, which enables ex vivo measurements of large areas of skin surface during a few minutes. Non-negative least squares (NNLS) decomposition of mouse skin spectral maps was done using keratin, lipids, water, lactate, urea and natural moisture factor (NMF) components as library spectra. Fluorescence background of measured spectra was corrected using the fluorescence profile obtained from time-lapse Raman skin measurements, which was used as additional component in NNLS decomposition procedure. The lateral and depth distribution of major skin components obtained from Raman maps mainly correlates with histological information. High-quality line-focus Raman maps from large sample area expand the possibilities of studying skin chemical components distribution.  相似文献   

8.
Resonance enhanced coherent anti-Stokes Raman scattering (CARS) spectra have been obtained for the highly fluorescing acridine dyes, acridine orange and proflavine, in dilute methanol solutions at submillimolar concentrations. Spectra have also been taken in the multiplex mode by the use of a broad-band Stokes laser and a Vidicon OMA detection system. Several Raman bands are observed in the 1100–1600 cm?1 region originating from the acridine ring modes. Upon decreasing the beam crossing angle a continuous transition from the normal CARS spectrum to a negative spectrum in the nonresonant background is observed.  相似文献   

9.
高压变质二氧化硅矿物的合成及表征   总被引:1,自引:0,他引:1  
根据高能机械球磨与地球板块碰撞之间具有的碰撞局域性和剪切应力相似的特点, 采用高能机械球磨和静高温高压技术, 以α-石英与石墨混合粉末为原料, 提出了人工合成地表柯石英的一种新方法. 利用高能机械球磨制备了α-石英和石墨纳米非晶混合粉末, 其高温高压合成柯石英的最低条件是970 K和3.7 GPa. 合成的柯石英有10个Raman峰, 分别位于120, 152, 179, 206, 270, 329, 357, 428, 467和521 cm-1, 是目前最全的柯石英Raman谱.  相似文献   

10.
拉曼镊子(Raman tweezers)是将激光光镊(Optical tweezers)与显微拉曼光谱(Raman spectroscopy)结合的光学技术,可以在接近自然状态下研究单个生物细胞或细胞器.因其有无直接接触、无损伤、快速识别、实时追踪等特点,广泛用于生物细胞的识别、探测、筛选等.研究显示,拉曼镊子在微观生物研究的应用中,可提高拉曼光谱的信噪比,也能实现生化动力学过程的实时跟踪,从而能深刻了解细胞内生物大分子的活动规律.本文着重介绍了拉曼镊子的起源、原理及其在单细胞中的应用以及展望.  相似文献   

11.
Visible wavelength excitation enables Raman spectra to be recorded successfully from approximately 10% of the “real, live” samples encountered in routine analytics without recourse to purification procedures. Fluorescence from impurities present in the sample often masks the Raman spectrum. This is especially true of the industrial environment. The great advantage of the newly-developed technique of near-infrared Fourier transform Raman spectroscopy (NIR FTR) is that fluorescence arising from sample impurity is not excited. Now about 90% of all samples show Raman spectra. However, it is possible to increase both the number of samples open to study using NIR FTR and to improve the quality of the spectra by optimizing the sampling arrangement. This involves taking into consideration the optical properties of the sample, especially the absorption spectrum and thermal emission characteristics, according to Planck's and Kirchhoff's laws. Only a few samples continue to show continuous backgrounds; this is sometimes true even if no background is apparent with visible excitation. The sources of such backgrounds are described, as are means to reduce or eliminate most of them.  相似文献   

12.
基于拉曼光谱成像技术对小麦粉中过氧化苯甲酰和L-抗坏血酸进行快速、 无损、 原位检测, 并对2种添加剂的空间分布进行了可视化研究. 采用实验室自行搭建的线扫描式拉曼光谱成像系统, 激发光源波长为785 nm, 有效光谱范围为0~2885.7 cm-1. 分别在小麦粉中添加含量为0.1%~30%的过氧化苯甲酰和L-抗坏血酸, 对制备的样品进行拉曼光谱扫描, 选取感兴趣区域的光谱信号进行平均, 得到平均光谱代表该样品的拉曼信息. 分别选取过氧化苯甲酰和L-抗坏血酸的2个特征峰, 与该物质在小麦粉中的含量建立线性关系, 其决定系数R2分别为0.9828 和0.9912. 采集的特征波段拉曼图像经过自适应迭代重加权惩罚最小二乘(airPLS)方法扣除荧光背景后, 选取合适的特征峰强度作为阈值, 对校正拉曼图像进行二值化分析, 得到添加物的空间分布可视化图像. 该方法与点检测拉曼技术相比, 具有检测结果准确且检测时间较短的优势, 且可以实现不均匀样品中多种物质的同时检测与分布可视化.  相似文献   

13.
The Langmuir-Blodgett (LB) monolayer technique was used to fabricate single molecule LB monolayer containing bis(phenethylimido)perylene (PhPTCD), a red dye dispersed in arachidic acid (AA) with an average doping of 1 molecule per microm2. The monolayer was transferred onto Ag island films to obtain spatially resolved surface-enhanced resonance Raman scattering (SERRS) spectra. The mixed LB monolayers were fabricated with a concentration, on average, of 1, 6, 19 and 118 PhPTCD molecules per microm2 in AA. The AA provides a two-dimensional host matrix whose background signal does not interfere with the detection of the probe molecule's SERRS signal. The properties of the single molecule detection were investigated using micro-Raman with a 514.5-nm laser line. The Ag island surfaces coated with the LB monolayer were mapped with spatial steps of 3 microm and global chemical imaging of the most intense SERRS band in the spectrum was also recorded. The SERRS and surface-enhanced fluorescence (SEF) of the neat and single molecule LB monolayer were recorded in a temperature range from liquid nitrogen to + 200 degrees C. Neat PhPTCD LB monolayer spectra served as reference for the identification of characteristic signatures of the single molecule behavior. The spatial resolution of Raman-microscopy experiments, the multiplicative effect of resonance Raman and SERRS, and the high sensitivity of the new dispersive Raman instruments, allow SERRS to be part of the family of single molecular spectroscopies.  相似文献   

14.
Deep UV resonance Raman micro-spectroscopy (lambda(exc) = 244 nm) was applied for a highly sensitive, selective, and gentle localization of the antimalarial quinine in situ in cinchona bark. The high potential of the method was demonstrated by the detection of small amounts of the alkaloid in the plant material without any further sample preparation, where conventional (non-resonant) Raman microscopy was unsuccessful due to a strong fluorescence background. The resonance Raman spectrum of cinchona bark corresponds well with that of quinine; it can be distinguished from its diastereomer quinidine via the mode at 831 cm(-1), which is shifted to 843 cm(-1) in the case of quinidine. This vibration involves a bending motion within the side chain around the chiral center of quinine. Vibrations belonging to the quinoline ring (important for its antimalarial activity in forming pi-pi-interactions to hemozoin) and the vinyl group are resonantly enhanced in the UV Raman spectra. A convincing mode assignment is derived by means of a combination of NIR Raman spectroscopy and DFT calculations. The Raman spectra of quinine in cinchona bark are modeled by considering a hydrous environment that causes a shift of the band at 1362 compared with 1371 cm(-1) in anhydrous quinine. This intense vibration is therefore sensitive to the presence of an aqueous environment and is assigned mostly to a stretching motion within the quinoline ring. The presented results nicely show the sensitivity of Raman spectroscopy to monitor subtle differences within the molecular structure and the influence of a biological relevant hydrous environment and trace low concentrated pharmaceutical relevant active agents in plant material.  相似文献   

15.
A new external calibration procedure for FT-ICR mass spectrometry is presented, stepwise-external calibration. This method is demonstrated for MALDI analysis of peptide mixtures, but is applicable to any ionization method. For this procedure, the masses of analyte peaks are first accurately measured at a low trapping potential (0.63 V) using external calibration. These accurately determined (< 1 ppm accuracy) analyte peaks are used as internal calibrant points for a second mass spectrum that is acquired for the same sample at a higher trapping potential (1.0 V). The second mass spectrum has a approximately 10-fold improvement in detection dynamic range compared with the first spectrum acquired at a low trapping potential. A calibration equation that accounts for local and global space charge is shown to provide mass accuracy with external calibration that is nearly identical to that of internal calibration, without the drawbacks of experimental complexity or reduction of abundance dynamic range. For the 609 mass peaks measured using stepwise-external calibration method, the root-mean-square error is 0.9 ppm. The errors appear to have a Gaussian distribution; 99.3% of the mass errors are shown to lie within three times the sample standard deviation (2.6 ppm) of their true value.  相似文献   

16.
In this study, we compare near-infrared (NIR) and Raman spectroscopy for the determination of the density of linear low density polyethylene (PE) (in a pellet form). As generally known, Raman spectral features are more selective than those of NIR for most chemical samples. NIR spectroscopy has been more extensively used for the quantitative analysis of polymers, but Raman spectroscopy is the better choice as long as the problem of reproducibility of Raman measurements (especially for solid samples), mostly resulting from insufficient sample representation due to probing only localized chemical information and the sensitivity of sample placement with regard to the focal plane, can be overcome. To improve sample representation and reproducibility of Raman measurements, we have employed the wide area illumination (WAI) Raman scheme, capable of illuminating a laser onto a large sample area (28.3 mm2) for Raman spectral collection (a 6-mm laser spot with a focal length of 248 mm). Diffuse reflectance NIR spectra of PE pellets were collected using a sample moving system which allowed for the scanning of large areas. The prediction error was 0.0008 g cm−3 for Raman spectroscopy and 0.0011 g cm−3 for NIR spectroscopy. The harmonization of inherently selective Raman features and a reproducible spectral collection with correct sample representations using the WAI scheme led to an accurate determination of the density of the PE pellets.  相似文献   

17.
Endothelial cells (EC) constitute a single layer of the lining of blood vessels and play an important role in maintaining cardiovascular homeostasis. Endothelial dysfunction has been recognized as a primary or secondary cause of many diseases and it manifests itself, among others, by increased lipid content or a change in the lipid composition in the EC. Therefore, the analysis of cellular lipids is crucial to understand the mechanisms of disease development. Tumor necrosis factor alpha (TNF-α)-induced inflammation of EC alters the lipid content of cells, which can be detected by Raman spectroscopy. By default, lipid detection is carried out in a label-free manner, and these compounds are recognized based on their spectral profile characteristics. We consider (3S,3′S)-astaxanthin (AXT), a natural dye with a characteristic resonance spectrum, as a new Raman probe for the detection of lipids in the EC of various vascular beds, i.e., the aorta, brain and heart. AXT colocalizes with lipids in cells, enabling imaging of lipid-rich cellular components in a time-dependent manner using laser power 10 times lower than that commonly used to measure biological samples. The results show that AXT can be used to study lipids distribution in EC at various locations, suggesting its use as a universal probe for studying cellular lipids using Raman spectroscopy. The use of labeled Raman imaging of lipids in the EC of various organs could contribute to their easier identification and to a better understanding of the development and progression of various vascular diseases, and it could also potentially improve their diagnosis and treatment.  相似文献   

18.
The 5145 Å laser line was used to excite gaseous bromine in order to observe the resonance Raman effect. In the Stokes side, strong resonance fluorescence overwhelm, therefore the resonance Raman scattering could not be detected. However, in the anti-Stokes side, four resonance Raman peaks were observed. The corresponding transitions are Δν= ?1 to ?4. The resonance Raman spectrum excited by the 4880 Å laser line was also presented for comparison.  相似文献   

19.
Zinc phosphates are important in the study of the phosphatisation of metals. Raman spectroscopy in combination with infrared spectroscopy has been used to characterise the zinc phosphate minerals. The minerals may be characterised by the patterns of the hydroxyl stretching vibrations in both the Raman and infrared spectra. Spencerite is characterised by a sharp Raman band at 3516 cm(-1) and tarbuttite by a single band at 3446 cm(-1). The patterns of the Raman spectra of the hydroxyl stretching region of hopeite and parahopeite are different in line with their differing crystal structures. The Raman spectrum of the PO4 stretching region shows better band separated peaks than the infrared spectra which consist of a complex set of overlapping bands. The position of the PO4 symmetric stretching mode can be used to identify the zinc phosphate mineral. It is apparent that Raman spectroscopy lends itself to the fundamental study of the evolution of zinc phosphate films.  相似文献   

20.
A highly versatile setup, which introduces an optical gradient trap into a Raman spectrometer, is presented. The particular configuration, which consists of two lasers, makes trapping independent from the Raman excitation laser and allows a separate adjustment of the trapping and excitation wavelengths. Thus, the excitation wavelength can be chosen according to the needs of the application. We describe the successful application of an optical gradient trap on transparent as well as on reflective, metal-coated microparticles. Raman spectra were recorded from optically trapped polystyrene beads and from single biological cells (e.g., erythrocytes, yeast cells). Also, metal-coated microparticles were trapped and used as surface enhanced Raman spectroscopy (SERS) substrates for tests on yeast cells. Furthermore, the optical gradient trap was combined with a SERS fiber probe. Raman spectra were recorded from trapped red blood cells using the SERS fiber probe for excitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号