首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A compact multi-component trace-gas detector based on the resonant photoacoustic technique and a NIR external cavity diode laser has been developed. It has been characterized using a mixture of ethylene and methane diluted in ambient air. A spectroscopic investigation of combination bands and overtones between 5900 and 6250 cm-1, obtained with an IR pulsed laser photoacoustic spectrometer, allowed us to find a wavelength region where the 2ν3 overtone of CH4 and the ν59 combination band of C2H4 show uncongested rotational lines. Using a single-mode scan of the diode laser in this region, around 6150 cm-1, the sensitivity for the simultaneous detection of ethylene and methane is 8 ppm/mW and 40 ppm/mW respectively. Factors affecting the sensitivity and selectivity of the detection system and possible improvements suitable to reach the sub-ppm detection limit are discussed. Received: 1 August 2001 / Revised version: 28 November 2001 / Published online: 7 February 2002 An erratum to this article is available at .  相似文献   

2.
The measurement of relative intensities in CO2 combination bands spectrum is performed using wavelength modulation spectroscopy (WMS) and a DFB (distributed feedback) diode laser operating at 1.6 μm. The diode laser is stabilized with an external Fabry–Pérot interferometer and absorption spectroscopy is performed in a multipass gas cell. A spectrum containing spectral lines of both 13CO2 and 12CO2 isotopic species is recorded. The variation of laser power during frequency scanning and the line shape are taken into account to accurately extract line intensities from experimental data. The isotopic concentration ratio is deduced from the intensity ratio. Both ratios are measured with an accuracy of about 0.5% in pure CO2. Received: 9 June 2000 / Published online: 8 November 2000  相似文献   

3.
The absorption spectra of the 12CH4 and 13CH4 molecules have been recorded and assigned in the 5560-6200 cm−1 region. The effects of isotopic substitution for 12C by 13C on the methane vibrational energy levels have been calculated from an ab initio potential energy surface and compared with experiment. Comparison of the results obtained for two isotopic species allows us to confirm the vibrational assignment for the strongest bands of 12CH4 in this region. Good agreement of ab initio calculations with observed energy levels has been demonstrated. A list of the assigned 13CH4 lines valuable in atmospheric applications is reported.  相似文献   

4.
Relative and absolute line intensities for the ν3 bands of the 12C and 13C isotopic varieties of methane have been measured using a tunable difference-frequency laser spectrometer. From these data the integrated band strength of 13CH4 is calculated to be 0.983 ± 0.007 that of 12CH4, with the uncertainty representing three standard deviations. The absolute ν3 bandstrength for 12CH4 is 266.1 ± 3.0 cm?2 atm ?1 at 294.7 K where the errors are dominated by the pressure measurement. This band strength corresponds to an effective transition moment 〈μ3〉 = 0.0534(3)D for 12CH4 from which the ν4 band dipole moment and the Herman-Wallis F factor can be estimated using a recent force field model for methane.  相似文献   

5.
Presented is a compact instrument developed for in situ high-stable and sensitive continuous measurement of trace gases in air, with results shown for ambient methane (CH4) concentration. This instrument takes advantage of recent technology in thermoelectrically cooled pulsed Fabry–Perot (FP) quantum cascaded (QC) laser driving in a pulse mode operating at 7.5 μm to monitor a well-isolated spectral line near the ν4 fundamental band of CH4. A high-quality liquid nitrogen cooled mercury cadmium telluride mid-infrared detector with time discriminating electronics is used along with a total reflection coated gold ellipsoid mirror offering 20 cm single pass optical absorption in an open-path cell to achieve stability of 5.2 × 10?3 under experimental condition of 200 ppm measured ambient CH4. The instrument operates continuously, and integrated software for laser control using direct absorption provides quantitative trace gas measurements without calibration. One may substitute a QC laser operating at a different wavelength to measure other gases. The instrument can be applied to field measurements of gases of environmental concern.  相似文献   

6.
The combination of two-dimensional, planar laser-induced fluorescence (PLIF) and cavity ring-down (CRD) absorption spectroscopy is applied to map quantitatively the spatial distributions of CH2O and CH in a methane/air flame at 25 Torr. Both species are detected in the same spectral region using the overlapping CH2O A 1 A 2 -X 1 A 1 41 0 and CH B-X(1,0 )bands. The combination of diagnostic techniques exploits the spatial resolution of LIF and the quantitative CRD absorption measure of column density. The spatially resolved PLIF provides the distribution of absorbers and line-of-sight CRD absorption the absolute number density needed for quantitative concentration images. The peak CH2O concentration is (3.5±1.4 )×1014 cm-3, or 1450±550 ppm at 1000 K. The lack of precise absorption cross-section data produces these large error limits. Although a flame model predicts lower amounts, these large uncertainties limit this measurement’susefulness as a test of the flame chemistry. Received: 24 April 2001 / Revised version: 10 July 2001 / Published online: 10 October 2001  相似文献   

7.
Optical feedback cavity-enhanced absorption spectroscopy (OF CEAS) has been demonstrated with a thermoelectrically cooled continuous wave distributed feedback quantum cascade laser (QCL) operating at wavelengths around 7.84 μm. The QCL is coupled to an optical cavity which creates an absorption pathlength greater than 1000 m. The experimental design allows optical feedback of infra-red light, resonant within the cavity, to the QCL, which initiates self-locking at each TEM00 cavity mode frequency excited. The QCL linewidth is narrowed to below the mode linewidth, greatly increasing the efficiency of injection of light into the cavity. At the frequency of each longitudinal cavity mode, the absorption coefficient of an intracavity sample is obtained from the transmission at the mode maximum, measured with a thermoelectrically cooled detector: spectral line profiles of CH4 and N2O in ambient air were recorded simultaneously and with a resolution of 0.01386 cm?1. A minimum detectable absorption coefficient of 5.5×10?8 cm?1 was demonstrated after an averaging time of 1 s for this completely thermoelectrically cooled system. The bandwidth-normalised limit for a single cavity mode is 5.6×10?9 cm?1?Hz?1/2 (1σ).  相似文献   

8.
Spectroscopic detection of the methane in natural air using an 800 nm diode laser and a diode-pumped 1064 nm Nd:YAG laser to produce tunable light near 3.2 µm is reported. The lasers were pump sources for ring-cavity-enhanced tunable difference-frequency mixing in AgGaS2. IR frequency tuning between 3076 and 3183 cm–1 was performed by crystal rotation and tuning of the extended-cavity diode laser. Feedback stabilization of the IR power reduced intensity noise below the detector noise level. Direct absorption and wavelength-modulation (2f) spectroscopy of the methane in natural air at 10.7 kPa (80 torr) were performed in a 1 m single-pass cell with 1 µW probe power. Methane has also been detected using a 3.2 µm confocal build-up cavity in conjunction with an intracavity absorption cell. The best methane detection limit observed was 12 ppb m (Hz.)–1/2.  相似文献   

9.
An all-diode-laser-based spectrometer is used for the simultaneous detection of methane, oxygen and water vapour. This is accomplished using a 760-nm diode laser and a 980-nm diode laser in conjunction with difference-frequency generation to 3.4 μm in a periodically poled lithium niobate crystal. Each of the output wavelengths is resonant with one of the molecular species. Simultaneous recordings over a 15-m open path of laboratory air are demonstrated. The recording scheme shows the wide applicability of a diode-laser-based difference-frequency spectrometer for the detection of molecular species in different wavelength ranges. By increasing the frequency of the 760-nm diode laser and decreasing the frequency of the 980-nm diode laser, a maximum continuous tuning range in the mid infrared of 3.6 cm-1 is achieved. This enables the recording of several methane lines at atmospheric pressure. Pressure-dependence studies of methane lineshapes are also performed in an absorption cell. An indoor-air methane background level of 3 ppm is measured. The signal-to-noise ratio in the recorded methane spectra indicates that sub-ppm detection of methane at atmospheric pressure is feasible. Received: 6 March 2000 / Revised version: 19 June 2000 / Published online: 11 October 2000  相似文献   

10.
A continuous wave quantum cascade laser (QCL), operating near 8.1 μm, was used for wavelength modulation spectroscopy of methane (CH4) and nitrous oxide (N2O) stable isotopes. Several rotational transitions of 14N2 16O, 15N14N16O, 14N2 18O, 14N2 17O, 13CH4 and 12CH4 fundamental bands were detected. The noise-equivalent absorbance was measured to be less than 10-5 in a 1-Hz bandwidth. A characterization of the laser source was also performed. The use of a QCL spectrometer for high-precision isotope ratio measurements is discussed. Received 14 March 2002  相似文献   

11.
Laser-induced thermal gratings (LITG) were generated in mixtures of ethylene and ammonia in nitrogen using mid-infrared laser radiation from a grating-tuned, low-pressure, pulsed (5 ms pulse width) CO2 laser, and read out with a continuous wave Nd:YLF laser. The LITG signal intensity was measured as a function of pressure (0.1–2 MPa) and temperature (300–800 K, at 0.1 and 1 MPa) by tuning the laser to the accidental coincidences of the 10P(14) and 10R(6) emission lines with molecular absorption transitions of C2H4 and NH3, respectively. Comparisons are made with theoretical predictions for the grating efficiency from a simple thermalization model. A theoretical comparison of the temporal LITG signal response for three excitation pulse shapes – a delta function, a realistic pulse, and a square wave is presented. Furthermore, it is shown that for NH3, most of the decrease of the LITG signal intensity with increasing temperature is due to the corresponding decrease in fractional molecular absorption of the pump beam radiation. The diagnostic capabilities of the mid-infrared LITG experiment is demonstrated for spatially resolved ethylene measurements with long laser pulses in a premixed stoichiometric CH4–air flame at atmospheric pressure. Received: 17 March 2000 / Revised version: 23 March 2000 / Published online: 13 September 2000  相似文献   

12.
A novel instrument that employs a high-finesse optical cavity as an absorption cell has been developed for sensitive measurements of gas mixing ratios using near-infrared diode lasers and absorption-spectroscopy techniques. The instrument employs an off-axis trajectory of the laser beam through the cell to yield an effective optical path length of several kilometers without significant unwanted effects due to cavity resonances. As a result, a minimum detectable absorption of approximately 1.4×10-5 over an effective optical path of 4.2 km was obtained in a 1.1-Hz detection bandwidth to yield a detection sensitivity of approximately 3.1×10-11 cm-1 Hz-1/2. The instrument has been used for sensitive measurements of CO, CH4, C2H2 and NH3. Received: 6 May 2002 / Revised version: 31 May 2002 / Published online: 2 September 2002 RID="*" ID="*"Corresponding author. Fax: +1-650/965-7074, E-mail: d.baer@lgrinc.com  相似文献   

13.
Thin layers of hydrogenated amorphous carbon were prepared by using organic hydrocarbon source, xylene (C8H10), in plasma-enhanced chemical vapor deposition (PECVD) system. The microstructures were characterized by using Fourier-transform infrared and Raman scattering spectra. The appearance of a sharp vibration signal in 1600 cm-1 strongly suggests the existence of sp2 carbon clusters with aromatic rings. With increasing the deposition rf power, the content of these aromatic structures is increased in the films. In contrast to a broad single PL peak in methane (CH4)-baseda-C:H films, the PL band of xylene-based a-C:H films contains multiple peaks in blue-green light region, which is influenced by rf power. We tentatively attributed it to the radiative recombination of electron-hole pairs through some luminescent centers associated with aromatic structures. Received: 26 April 2000 / Accepted: 9 May 2000 / Published online: 13 September 2000  相似文献   

14.
A tunable mid-infrared continuous-wave (cw) spectroscopic source in the 3.4–4.5 μm region is reported, based on difference frequency generation (DFG) in a quasi-phase-matched periodically poled RbTiOAsO4 (PPRTA) crystal, DFG power levels of 10 μW were generated at approximately 4 μm in a 20-mm long PPRTA crystal by mixing two cw single-frequency Ti:Al2O3 lasers operating near 713 nm and 871 nm, respectively, using a laser pump power of 300 mW. A quasi-phase-matched infrared wavelength-tuning bandwidth (FWHM) of ∼12 cm-1 and a temperature tuning rate of 1.02 cm-1/°C were achieved. Experimental details regarding the feasibility of trace gas detection based on absorption spectroscopy of CO2 in ambient air using this DFG radiation source are also described. Received: 23 October 2000 / Revised version: 22 January 2001 / Published online: 27 April 2001  相似文献   

15.
J. Hijmans 《Molecular physics》2013,111(3):307-310
The second virial coefficient of normal methane, 12CH4, has been compared with that of the corresponding deutero compound 12CD4, as well as with the other isotopic molecule, 13CH4. These measurements were performed by means of a differential apparatus over a range of temperature extending from 110°k up to 300°k.  相似文献   

16.
We report two kinds of compact and efficient diode-end-pumped TEM00 lasers with output power >25 W at ≈50 W of incident pump power. One laser consists of a single 0.3 at. % Nd:YVO4 crystal in a V-type cavity, the other laser includes two 0.5 at. % Nd:YVO4 crystals in a linear cavity. Experimental results show that lowering Nd3+ concentration can be beneficial in extending the fracture-limited pump power but it also increases the sensitivity of the pump wavelength due to the overlapping efficiency. Received: 19 February 2000 / Revised version: 30 May 2000 / Published online: 20 September 2000  相似文献   

17.
Using a theoretical model and mass isotopic balance, biogas (methane and CO2) released from buried products at their microbial degradation was analysed in the landfill of municipal and non-toxic industrial solid organic waste near Kaluga city, Russia. The landfill contains about 1.34×106 tons of waste buried using a ‘sandwich technique’ (successive application of sand–clay and waste layers). The δ13C values of biogenic methane with respect to CO2 were?56.8 (±2.5) ‰, whereas the δ13C of CO2 peaked at+9.12‰ (+1.4±2.3‰ on average), reflecting a virtual fractionation of carbon isotopes in the course of bacterial CO2 reduction at the landfill body. After passing through the aerated soil layers, methane was partially oxidised and characterised by δ13C in the range of?50.6 to?38.2‰, evidencing enrichment in 13C, while the released carbon dioxide had δ13C of?23.3 to?4.04‰, respectively. On the mass isotopic balance for the δ13C values, the methane production in the landfill anaerobic zone and the methane emitted through the aerated landfill surface to the atmosphere, the portion of methane oxidised by methanotrophic bacteria was calculated to be from 10 to 40% (averaged about 25%). According to the theoretical estimation and field measurements, the annual rate of methane production in the landfill reached about 2.9(±1.4)×109 g C CH4 yr?1 or 5.3(±2.6)×106 m3 CH4 yr?1. The average rates of methane production in the landfill and methane emission from landfill to the atmosphere are estimated as about 53 (±26) g C CH4 m?2 d?1 (or 4 (±2) mol CH4 m?2 d?1) and 33 (±12) g C CH4 m?2 d?1 (or 2.7 (±1) mol CH4 m?2 d?1), respectively. The calculated part of methane consumed by methanotrophic bacteria in the aerated part of the landfill was 13(±7) g C CH4 m?2 d?1 (or 1.1(±0.6) mol CH4 m?2 d?1) on average.  相似文献   

18.
Abstract

For the high precision isotope analysis of atmospheric trace gases a computer controlled concentration interface has been developed. From small air samples it collects either N2O or CO2 derived from CH4 at their respective concentrations (0.3 ppm for N2O, 1.7 ppm for CH4) into a small diameter cold trap (?196°C) and interfaces via GC and open split to an isotope ratio mass spectrometer (Finnigan MAT 252) for on-line isotope evaluation. External reproducibilities for repeated measurements of 100 ml air samples from the same source of < 0.2° (δ-notation) have been achieved for 13C/12C from CH4 and for 15N/14N and 18O/16O from N2O. The precision is adequate to monitor the isotopic changes in these gases during a day's course.  相似文献   

19.
We present a high-power (2.75 W), broadly tunable (2.75–3.83 μm) continuous-wave optical parametric oscillator based on MgO-doped periodically poled lithium niobate. Automated tuning of the pump laser, etalon and crystal temperature results in a continuous wavelength coverage up to 450 cm-1 per poling period at <5×10-4 cm-1 resolution. The versatility of the optical parametric oscillator as a coherent light source in trace-gas detection is demonstrated with photoacoustic and cavity ring-down spectroscopy. A 17-cm-1-wide CO2 spectrum at 2.8 μm and multi-component gas mixtures of methane, ethane and water in human breath were measured using photoacoustics. Methane (at 3.2 μm) and ethane (at 3.3 μm) were detected using cavity ring-down spectroscopy with detection limits of 0.16 and 0.07 parts per billion by volume, respectively. A recording of 12CH4 and 13CH4 isotopes of methane shows the ability to detect both species simultaneously at similar sensitivities. PACS 42.65.Yj; 42.72.Ai; 42.62.Fi  相似文献   

20.
Methanol (CH3OH) is considered today one of the most important active media for the generation of laser radiation in the far-infrared (FIR) spectral region. Together with ten of its other isotopic species, it is responsible for the major part of the laser lines generated by the optical pumping technique. Due to the extreme importance of those molecules as laser generators, we understood that there was a necessity of a comprehensive work which would include as much pratical information as possible about each line.Chang et al(1) early recognized methanol as a source of strong FIR laser lines. Since then, more than 100 papers were published containing information about new laser emission. Recently, Moruzzi et al(114) presented a review of 575 lines produced by12CH3OH. In the present paper, we have extended the review to the various isotopic modifications of this molecule (namely13CH3OH, CD3OH,13CD3OH, CD3OD,13CD3OD, CH3OD, CH 3 18 OH, CH2DOH, CH2DOD and CHD2OH), a total of nearly 2000 lines with wavelengths ranging from 19µm to 3030µm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号