共查询到20条相似文献,搜索用时 0 毫秒
1.
U. Meier 《Applied Surface Science》2005,252(4):1139-1146
For Si-ZnO heterostructures, prepared by magnetron sputtering, the interface morphology is studied by XPS and UPS. ZnO films on Si(1 1 1) surfaces (H-termination and 7 × 7) were prepared by magnetron sputtering and metal organic molecular beam epitaxy (MOMBE) and are investigated in well defined deposition steps and the interface properties were studied in situ. All samples were handled in situ under ultra high vacuum (UHV) conditions. Up to five different interface phases were detected depending on ZnO preparation. Beside a SiOx film induced by the sputter process, ZnO and Zn2SiO4 phases are resolved. In addition hydrogen, appearing as ZnOHx, is found in considerable concentrations in the films. 相似文献
2.
The surface electronic state on the stepped surface of Cu(755) has been investigated by means of angle-resolved ultraviolet photoelectron spectroscopy using synchrotron radiation(SR-ARUPS). We have observed a free-electron-like surface state below the Fermi level. In spite of the anisotropy of the atomic arrangement due to steps, the surface state is shown to be isotropic since the dispersion profile and the peak shape are almost identical in the directions parallel and perpendicular to the steps. This result makes a clear contrast with the previous SR-ARUPS results on Ni(755) surfaces which have the surface structure similar to Cu(755). Those experimental evidences are discussed based upon the electron configurations of both metal substrates. 相似文献
3.
ZnO nanorods and nanonails have been synthesized on silicon wafers by a three-step catalyst-free thermal evaporation method in oxygen atmosphere. All the samples were hexagonal phase ZnO with highly c-axis preferential orientation. Different morphologies of ZnO nanostructures, i.e. ZnO nanorods and two kinds of nanonails, were observed at various temperature regions. Photoluminescence, transmission electron microscopy, and energy-dispersive X-ray spectroscope were employed to elucidate the reason for the formation of such different rod-like structures. The analysis results demonstrated that the caps of nanonails possess a large number of oxygen vacancies, which may play a key role in determining the formation of nanonails and the high intensity of green emission. 相似文献
4.
The thermal oxidation process of metallic zinc on 6H-SiC(0 0 0 1) surface has been investigated by using atomic force microscopy (AFM), synchrotron radiation photoelectron spectroscopy (SRPES) and XPS methods. The AFM images characterize the surface morphology of ZnO film formed during the thermal oxidation and SRPES record the valence band, Si 2p and Zn 3d spectra at different stages. The O 1s peak is recorded by XPS because of the energy limit of the synchrotron radiation. Our results reveal that the silicon oxides layer of SiC substrate can be reduce by hot metallic zinc atom deposition. The oxygen atoms in the silicon oxides are captured by the zinc atoms to form ZnOx at the initial stage and as a result, the oxidized SiC surface are deoxidized. After the zinc deposition with the final thickness of 2.5 nm, the sample is exposed in oxygen atmosphere and annealed at different temperatures. According to the evolution of peaks integrated intensities, it is considered that the Zn/SiC system will lose zinc atoms during the annealing in oxygen flux at high temperature due to the low evaporation temperature of pure zinc. After further annealing in oxygen flux at higher temperature, the substrate is also oxidized and finally the interface becomes a stable SiC-SiOx-ZnO sandwich structure. 相似文献
5.
In this study the electron diffusion length L
n is determined from the relative spectral response of the photocurrent characteristics of the p/i/n sandwich structure ITO/a-SiC:H(p-type)/a-Si:H/a-Si:H(n-type)/Pd. The techniques used for the preparation of the a-Sic:H and a-Si:H amorphous films were glow-discharge and rf magnetron sputtering, respectively. The thickness of the p-type, intrinsic and n-type layer were 400 Å, 7000 Å and 600 Å, respectively. The response of the short-circuit current density J
sc was measured versus the photon energy hv at both constant light intensity and constant temperature. The electron diffusion length was found to be 0.31 m by means of the method of Agarwala and Tewary. Although, in the case of single crystals many diffusion length measurements have been made, there are only few papers for amorphous silicon this films [1]. As it is well-known, the diffusion length of the charge carriers is the most important parameter from the point of view of solar cell applications [2]. In order to obtain a high efficiency in a solar cell all carriers created under illumination in the intrinsic layer should reach the electrodes [3]. In the case that the thickness of the intrinsic layer is much larger than the diffusion length, not all carriers can reach the electrodes and, accordingly, a low efficiency results [4]. On the other hand, carriers which reach the electrodes without thermalizing do not contribute to the photocurrent and finally the efficiency of the solar cell is negatively affected. In order to avoid such an effect to a large extent, the thickness of the amorphous layers in a p/i/n solar cell must be conveniently chosen compared to the diffusion length of the carriers.Here it is aimed to determine the electron diffusion length. In order to achieve this goal, the photocurrent characteristics of an ITO/a-SiC:H(p-type)/a-Si:H/a-Si:H(n-type)/Pd structure was measured versus the photon energy at constant light intensity and constant temperature. In order to determine the electron diffusion length, the method of Agarwala and Tewary [5] was utilized. 相似文献
6.
C. Kennerknecht H. Hövel M. Merschdorf S. Voll W. Pfeiffer 《Applied physics. B, Lasers and optics》2001,73(4):425-429
The resonant multiple excitation of collective modes in metallic nanoparticles using ultrashort laser pulses leads to an enhanced
multiphoton photoemission from the particles. This effect is here demonstrated for the surface-plasmon resonance of Au nanoparticles
on graphite. The shape of the photoemission spectra is explained by multiphoton photo-assisted thermionic emission from the
nanoparticles and resonant emission via the image-potential state on graphite. Tuning the photon energy between 1.7 eV and
3.2 eV allows the identification of an enhancement of the photoemission yield at 2.1±0.1-eV photon energy that is attributed
to the resonant excitation of the surface plasmon in the Au nanoparticles. This identification of the surface-plasmon excitation
in this energy range is also supported by electron energy loss spectroscopy.
Received: 8 August 2001 / Revised version: 13 September 2001 / Published online: 10 October 2001 相似文献
7.
Susumu Takabayashi Keishi Okamoto Kunihiko Motomitsu Tatsuyuki Nakatani Hitoshi Suzuki 《Applied Surface Science》2008,254(9):2666-2670
A new method to calibrate the binding energy (EB) using Au nanocolloids as a calibrant in XPS analysis of diamondlike carbon (DLC) is proposed by considering the DLC films with different electrical resistivities. A few microliters of a dilute aqueous solution containing Au nanocolloids were dropped onto a small local surface area of the DLC film, which became a stain before XPS measurements by gradually drying in vacuo. The observed peak EB of the C 1s spectrum at another native surface (an area without Au nanocolloids) of the DLC film was calibrated by setting that of the Au 4f7/2 spectrum of the Au nanocolloids to 84.0 (83.98 ± 0.02) eV. The adequacy of this method was investigated by considering the correlation among the full width at half maximums (FWHMs) of the Au 4f7/2 spectra of the Au nanocolloids on the DLC surfaces and that of a Au plate as a reference. Consequently, the FWHM of the Au 4f7/2 spectrum of the Au nanocolloids on the DLC surface is a candidate to investigate the differential charging effect of the DLC surface, and the calibration method is reliable if the FWHM agrees with that of the Au plate. 相似文献
8.
Size-dependent energy shift of photoemission spectra with respect to bulk sample has been examined for colloidally prepared CdSe nanoparticles with a series of particle sizes. The core-level shifts are well described by a theoretical calculation based on a final-state effect model, whereas an additional initial-state effect due to quantum confinement is required to elucidate the valence-band edge shifts. The results indicate that the interaction between the photohole and the dielectric background in the final state has to be considered in photoemission measurements for organics-passivated nanoparticles. The calculated results in the literature appear to overestimate the initial-state effect compared to our experimental observation. 相似文献
9.
To resolve the problem of p-type doping in ZnO, nitrogen and aluminum (N-Al) codoped ZnO films were prepared by the ultrasonic spray pyrolysis (USP) technique. The structural and electrical properties of N-Al codoped ZnO films were investigated. The results demonstrate that the undoped ZnO films exhibit the preferential orientation of (002) plane, while ZnO films show high orientation of (101) plane after codoping with N and Al. The N-Al codoped ZnO films under optimum conditions show p-type conduction, with a low resistivity of 1.7×10−2Ω cm, carrier concentration of 5.09×1018 cm−3 and high Hall mobility of 73.6 cm2 V−1 s−1. A conversion from p-type conduction to n-type was observed during the increase of measurement temperature. 相似文献
10.
Platinum nanoparticles were synthesized by the methanol reduction method, and their size was controlled to 3 nm on average using PVP [poly(N-vinyl-2-pyrrolidon)] as a protecting unit. Various contents of Pt nanoparticles were incorporated into ZnO solutions which were synthesized by a sol-gel process. ZnO films with Pt nanoparticles of various content were annealed at 500 °C and 600 °C for 1 h. The crystallinity increased with the annealing temperature and also slightly with the content of Pt nanoparticles. The sheet resistance of ZnO films decreased with the incorporation of Pt nanoparticles, however the decreasing behavior was not maintained with increasing content of Pt nanoparticles. A shift of valence band maximum energy of ZnO film with Pt nanoparticles to higher energy was also observed due to electron transfer from Pt nanoparticles to ZnO film. The optical transmittance was 88 ± 2% in the visible region for all the ZnO films. Well-defined 60 μm wide direct-patterned ZnO films containing Pt nanoparticles of 0.5 atomic percent could be formed without using dry etching process. 相似文献
11.
ZnO films prepared from the ZnO target containing 2% AlN are transparent irrespective of radio frequency (RF) power. The obtained ZnO films have the carrier density of 3.8 × 1020 cm−3 or less and the low mobility of 5.3-7.8 cm2/(V s). In the case of 5% AlN target, ZnO films prepared at 40, 60 and 80 W are transparent, whereas ZnO films prepared at 100 and 120 W are colored. As RF power increases from 40 to 120 W, the carrier density increases straightforwardly up to 5.5 × 1020 cm−3 at 100 W and is oppositely reduced to 3.2 × 1020 cm−3 at 120 W. In the case of 10% AlN target, ZnO films prepared at 60 W or more are colored, and have the carrier density of 4 × 1020 cm−3 or less. The N-concentration in these colored films is estimated to be 1% or less. The Al-concentration in the ZnO films prepared from the 5 and 10% AlN targets is higher than 2%. The carrier density of the ZnO films containing Al and N atoms is nearly equal to that of ZnO films doped with Al atoms alone. There is no evidence in supporting the enhancement of the carrier density via the formation of N-AlxZn4−x clusters (4 ≥ x ≥ 2). 相似文献
12.
Chae-Seon Hong Seok-Joo Wang Hyung-Ho Park Ross H. Hill 《Applied Surface Science》2006,252(21):7739-7742
Direct patterning of ZnO thin film was realized without photoresist and dry etching by photochemical solution deposition. Photosensitive ortho-nitrobenzaldehyde was introduced into the solution precursors as a stabilizer and contributed to form a cross-linked network structure during photochemical reaction. Ag nanoparticles were prepared with uniform size distribution using trisodium citrate as a capping agent to incorporate into ZnO thin film in order to reduce the electrical resistance of the film. The optical and electrical properties of ZnO film with or without Ag nanoparticles after anneal at various temperatures were investigated. The reduction in transmittance with the increase in anneal temperature was observed and also the increase in the electrical resistance was found. The increase in the surface roughness of ZnO film and the decrease of surface oxygen deficiencies were mainly responsible for the decrease in transmittance and the increase in electrical resistance, respectively. 相似文献
13.
Photoelectron spectroscopy and X-ray absorption spectroscopy (XAS) measurements have been performed on HfSixOy and HfSixOyNz dielectric layers, which are potential candidates as high-k transistor gate dielectrics. The hafnium silicate layers, 3-4 nm thick, were formed by codepositing HfO2 and SiO2 (50%:50%) by MOCVD at 485 °C on a silicon substrate following an IMEC clean. Annealing the HfSixOy layer in a nitrogen atmosphere at 1000 °C resulted in an increase in the Si4+ chemical shift from 3.5 to 3.9 eV with respect to the Si0 peak. Annealing the hafnium silicate layer in a NH3 atmosphere at 800 °C resulted in the incorporation of 10% nitrogen and the decrease in the chemical shift between the Si4+ and the Si0 to 3.3 eV. The results suggest that the inclusion of nitrogen in the silicate layer restricts the tendency of the HfO2 and the SiO2 to segregate into separate phases during the annealing step. Synchrotron radiation valence band photoemission studies determined that the valence band offsets were of the order of 3 eV. X-ray absorption measurements show that the band gap of these layers is 4.6 eV and that the magnitude of the conduction band offset is as little as 0.5 eV. 相似文献
14.
Chemistry, electronic structure and electrical behavior at the interfaces between copper phthalocyanine (CuPc) and Mg with a reverse formation sequence were investigated using X-ray photoemission spectroscopy (XPS), ultraviolet photoemission spectroscopy (UPS), and current-voltage (I-V) measurements. A chemical reaction occurs between CuPc and Mg irrespective of the deposition sequence. Despite having different reaction zone thicknesses, both the CuPc-on-Mg and the Mg-on-CuPc interfaces exhibit chemistry-induced gap states and identical carrier injection barriers, which are confirmed by the symmetric electrical behavior obtained from I-V characteristics of devices with a structure of Mg/CuPc/Mg. These findings contrast with those expected from physisorptive noble metal-CuPc interfaces and suggest that strong local chemical bonding is a primary factor determining molecular level alignment at reactive metal-CuPc interfaces. 相似文献
15.
K. Ertel U. Kohl J. Lehmann M. Merschdorf W. Pfeiffer A. Thon S. Voll G. Gerber 《Applied physics. B, Lasers and optics》1999,68(3):439-445
Received: 6 November 1998 相似文献
16.
K. Takahiro S. Oizumi K. Kawatsura K. Nishio S. Yamamoto H. Naramoto 《Applied Surface Science》2009,256(4):1061-1064
In X-ray photoelectron spectroscopy (XPS) of Au nanoparticles, the width of 5d valence band changes with Au particle size. This enables us to estimate the size of Au nanoparticles by using XPS. In this work, the 5d-band width has been measured for Au nanoparticles formed by ion implantation into SiO2. The 5d-band width is found to be correlated strongly with the Au concentration. As the Au concentration increases, the 5d-band width becomes larger, indicating that the Au nanoparticles with the larger size tend to be formed in the vicinity of the projected range of Au ions. This correlation agrees very well with the results from transmission electron microscopy. 相似文献
17.
Li Li Liang Fang Xian Ju Zhou Zi Yi Liu Liang Zhao Sha Jiang 《Journal of Electron Spectroscopy and Related Phenomena》2009
In this paper, high quality Al-doped ZnO (AZO) thin films were prepared by direct current (DC) reactive magnetron sputtering using a Zn target (99.99%) containing Al of 1.5 wt.%. The films obtained were characterized by X-ray photoelectron spectroscopy (XPS) and thermoelectric measurements. The XPS results reveal that Zn and Al exist only in oxidized state, while there are dominant crystal lattice and rare adsorbed oxygen for O in the annealed AZO thin films. The studies of thermoelectric property show a striking thermoelectric effect in the AZO thin films. On the one hand, the thermoelectromotive and magnetothermoelectromotive forces increase linearly with increasing temperature difference (ΔT). On the other hand, the thermoelectric power (TEP) decreases with the electrical resistance of the sample. But the TEP increases with the increase of temperature below 300 K, and it nearly does not change around room temperature. The experimental results also demonstrate that the annealing treatment increases TEP, while the external magnetic field degrades TEP. 相似文献
18.
The conductance of SnO2 small nanowires: A study based on density functional and scattering theories
A.M. Mazzone 《Solid State Communications》2007,143(10):481-486
This study is motivated by the recent advances in the fabrication of oxide nanostructures and its purpose is the assessment of the relationship between their structural properties and the conductance. The structures considered are small SnO2 nanowires whose size and shape reproduce on a smaller scale the structures produced by current technologies. Their electronic configuration and the conductance are evaluated using the density functional and scattering theories with a simplified modelling of the external leads. The study of the electronic configuration shows that the structure of the allowed energy levels and of the charges responds to the details of the nanowire structure and composition. These effects are important in the context of the conductance. In fact, deep resonances are produced by the alignment of the allowed energy levels in the nanowire with the ones in the external leads. For these conductive channels the relationship between the size and the conductance parallels the one between the size and the binding energy. 相似文献
19.
X.J. Wu D.Z. Shen K.W. Liu B.H. Li Y.M. Lu B. Yao X.W. Fan 《Solid State Communications》2007,141(6):344-347
Fe-based cadmium sulfide alloy thin films have been grown on c-plane sapphire substrates by a low-pressure metalorganic chemical vapor deposition technique at different growth temperatures. From X-ray diffraction and absorption spectra of the samples, the evolutions with growth temperature show an inflexion at the growth temperature of 300 °C. This was attributed to the phase transformation from zinc-blende to wurtzite. With increasing growth temperature from 270 °C to 360 °C, Fe concentration in the films increases monotonously. The electronic states of Cd1−xFexS were investigated by X-ray photoelectron spectroscopy. Magnetic measurement shows Van Vleck paramagnetism of the Cd1−xFexS thin film in the temperature region below 7 K. 相似文献
20.
The composition and microstructure of rf sputtered 20 nm Ta2O5 on N2O or NH3 Rapid Thermal Nitrided (RTN) Si substrates have been investigated by X-ray photoelectron spectroscopy. RTN at 800 and 850 °C is effective to suppress active oxidation of Si. There is no evidence for the presence of SiO2 at Si interface. A lightly nitrided surface is established in both cases without a formation of detectable oxynitride layer at Si. A layered nature of the films is observed, with stoichiometric tantalum pentoxide at and close to the films’ surface. In the depth, the films are mixed ones whose composition depends on the nitridation ambient. N2O treatment stimulates oxidation processes during the film deposition while NH3 nitridation results to a less effective oxidation and produces Ta-silicate like film. The correlation between the composition of the interfacial regions and the nitridation gas is also discussed. The results suggest that hydrogen, as a component of nitridation ambient, plays significant role in the reactions controlling the exact composition of the deposited Ta2O5, activating reactions with nitrogen. Nitrogen related reactions likely occur with NH3 processing but do not with N2O one. The presence of nitrogen feature is not detected in N2O-samples spectra at all. In the integration perspective, preliminary RTN of Si in N2O or NH3 could be a suitable way to produce layered Ta2O5-based films with more or less presence of tantalum silicate with a trace of nitrogen, either only at the interface with Si (N2O-process) or in the whole film (NH3-process). 相似文献