首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sulfonated poly(ether ether ketone) (PEEK) was prepared by sulfonation of commercial Victrex@ PEEK and degree of sulfonation was found to be about 44.5% by 1H NMR. Sulfonated PEEK/polyaniline composite membranes, in order to prevent methanol crossover, were prepared by chemical polymerization of a thin layer of polyaniline (PANI) in the presence of a high oxidant concentration on a single face modification. FTIR and PANI coating density studies confirmed the loading of PANI in sulfonated PEEK membrane matrix. PANI composite membranes with different polymerization time were prepared and subjected to thermogravimetric analysis as well as electrochemical and methanol permeability study to compare with sulfonated PEEK and Nafion 117 membrane. Ion-exchange capacity, water uptake, proton transport numbers and proton conductivities for different PANI composite sulfonated PEEK (SPEEK) membranes were found to be dependent on the coating density of the PANI in the membrane matrix and were slightly lower than that of Nafion 117 membrane. Methanol permeability of these membranes (especially SPEEK/PANI-1.5) was about four times lower than Nafion 117 membrane. Among the all SPEEK membranes synthesized in this study, SPEEK-1.5 appears to be more suitable for direct methanol fuel cell (DMFC) application considering optimum physicochemical and electrochemical properties, thermal stability as well as very low methanol permeability. Above all, the cost-effective and simple fabrication technique involved in the synthesis of such composite membranes makes their applicability quite attractive.  相似文献   

2.
Journal of Solid State Electrochemistry - Sulfonated poly(ether ether ketone)/poly(vinylidene fluoride)/graphene (S/P/G) composite membrane was prepared through a solution-casting method for a...  相似文献   

3.
Poly(amide imide) (PAI) was synthesized using 1,2,4-benzenetricarboxylic anhydride (BTBA) and 4,4′-methylenebis(phenyl isocyanate) (MBPI). SPEEK/PAI blend membranes were prepared and investigated by NMR, GPC, FT-IR and AFM. The chemical structures of PAI and SPEEK were characterized by using NMR and FT-IR. The adsorption of the SPEEK/PAI blend membrane of water or methanol solution was also characterized. The significant swelling of the blend membrane in concentrated methanol solution was explained by the solubility parameter. The water diffusion coefficient (DH2O) was related to the lambda value of the membrane. The SPEEK/PAI blend membrane had a lower proton conductivity and methanol permeability than Nafion. However, the relative selectivity (proton conductivity divided by methanol permeability) of the SPEEK/PAI 70/30 (w/w) blend membrane was 3.46 × 104 S s cm−3, which is closed to that of Nafion (3.30 S s cm−3).  相似文献   

4.
Illumination of air-free aqueous solutions containing sulfonated poly(ether ether ketone) and poly(vinyl alcohol) with 350 nm light results in benzophenone ketyl radicals of the polyketone. The polymer radicals form with a quantum yield 0.02 and decay with a second-order rate constant 6 orders of magnitude lower than that of typical alpha-hydroxy radicals. Evidence is presented that the polymeric benzophenone ketyl radicals reduce Ag+, Cu2+, and AuCl4- to metal particles of nanometer dimensions. Decreases in the reduction rates with increasing Ag(I), Cu(II), and Au(III) concentrations are explained using a kinetic model in which the metal ions quench the excited state of the polymeric benzophenone groups, which forms the macromolecular radicals. Quenching is fastest for Ag+, whereas Cu2+ and AuCl4- exhibit similar rate constants. Particle formation becomes more complex as the number of equivalents needed to reduce the metal ions increases; the Au(III) system is an extreme case where the radical reactions operate in parallel with secondary light-initiated and thermal reduction channels. For each metal ion, the polymer-initiated photoreactions produce crystallites possessing distinct properties, such as a very strong plasmon in the Ag case or the narrow size distribution exhibited by Au particles.  相似文献   

5.
Acid–base polymer blends for polymer electrolyte membranes have been prepared by blending sulfonated poly(ether ether ketone) (SPEEK) with poly(vinylpyrrolidone) (PVP) to reduce methanol uptake and to decrease methanol permeability while maintaining high proton conductivity. The acid‐base interaction occurring on the sulfonic acid group and on the tertiary amide group was characterized by FTIR and DMA. As the composition of PVP lowered than 20 wt % in the blends, the acid–base interaction causes great reduction on methanol uptake and the methanol permeability; however, the proton conductivity is still high. In this work, membrane–electrode assemblies (MEAs) have been prepared for direct methanol fuel cell (DMFC) from both blend membrane and Nafion 117. DMFC single cell performance was also evaluated. Results confirmed that SPEEK (with the degree of sulfonation (DS) = 69%) blended with PVP (Mn = 1,300,000) with a ratio of 80/20 (w/w) exhibits higher open‐circuit voltages (OCV) and lower polarization loss than those of Nafion 117. These acid–base blends will be suitable for DMFC application. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 565–572, 2006  相似文献   

6.
The solid proton conductor, phosphatoantimonic acid, HSbP2O8 · H2O was prepared by ion exchange of the corresponding potassium salt. The composite membranes of SPEEK with up to 40 wt% of HSbP2O8 · H2O were prepared by introducing the solid proton conductor from the aqueous suspension. The composite membranes were characterized using FT-IR, powder X-ray diffraction, SEM, DSC/TGA. Thermal stability of the composite membranes was slightly lower than that of SPEEK. The composite membranes had higher water uptake when compared with SPEEK and the membranes exhibited controlled swelling up to 50 °C. The proton conductivity of the membranes was measured under 100% relative humidity up to 70 °C. The composite membranes showed enhanced proton conductivity up to 20 wt% of HSbP2O8 · H2O and the conductivity was reduced with further increase of HSbP2O8 · H2O loading. A maximum of four-fold increase in proton conductivity at 70 °C was observed for the composite membrane with 20 wt% of solid proton conductor.  相似文献   

7.
A series of composite membranes consisting of sulfonated carbon nanotubes (sCNTs) and sulfonated poly(ether sulfone ether ketone ketone) were successfully fabricated via the solution casting method. The chemical structure, as well as the long‐term stability of the sCNTs in different solvents, was investigated by Fourier transform infrared (FTIR) analysis and solubility experiment, respectively. The morphology, tensile strength, proton conductivity, and methanol permeability of the composite membranes were also investigated. The scanning electron microscope (SEM) observation indicated the good dispersion of the carbon nanotubes in polymer matrix as well as the strong interfacial bonding between the sulfonated poly(ether sulfone ether ketone ketone) (SPESEKK) matrix and sCNTs. The addition of either pristine carbon nanotubes or modified carbon nanotubes significantly enhanced the tensile strength of the SPESEKK membrane. The proton conductivity of the SPESEKK membrane increased while the methanol permeability decreased as the sCNTs content increased, showing a strong interaction between the modified nanotubes and SPESEKK. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
In this work, we prepared amino-modified halloysite nanotubes (PEI-DHNTs) via the co-deposition of self-polymerized dopamine and polyethylenimine (PEI) on the surface of nanotubes, which was confirmed by X-ray photoelectron spectroscopy (XPS) and Thermogravimetric analysis (TGA). A series of composite proton exchange membranes (PEMs) were prepared by incorporating PEI-DHNTs and phosphotungstic acid (HPW) into sulfonated poly(ether ether ketone) (SPEEK). It was found that both PEI-DHNTs and HPW were well dispersed in the polymer matrix, exhibiting excellent filler-matrix compatibility. The composite membranes demonstrated enhanced proton conductivity, reaching as high as 0.078 S cm−1 with 33.3 wt.% HPW loading, which was ~90% higher than that of SPEEK control membrane. Such improvement was mainly attributed to the strong acid–base pairs formed by PEI-DHNT with both SPEEK and HPW, which shortened proton hopping distance and created more continuous proton conduction pathways. Furthermore, the membrane conductivity remained almost constant after 1 year's immersion in liquid water, indicating the successful immobilization of HPW in the composite membranes.  相似文献   

9.
The sulfonated poly(ether ether ketone sulfone) (SPEEKS)/heteropolyacid (HPA) composite membranes with different HPA content in SPEEKS copolymers matrix with different degree of sulfonation (DS) were investigated for high temperature proton exchange membrane fuel cells. Composite membranes were characterized by Fourier transfer infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). FTIR band shifts suggested that the sulfonic acid groups on the copolymer backbone strongly interact with HPA particles. SEM pictures showed that the HPA particles were uniformly distributed throughout the SPEEKS membranes matrix and particle sizes decreased with the increment of copolymers' DS. The holes were not found in SPEEKS‐4/HPA30 (consisting of 70% SPEEKS copolymers with DS = 0.8 and 30% HPA) composite membrane after composite membranes were treated with boiling water for 24 h. Thermal stabilities of the composite membranes were better than those of pure sulfonated copolymers membranes. Although the composite membranes possessed lower water uptake, it exhibited higher proton conductivity for SPEEKS‐4/HPA30 especially at high temperature (above 100 °C). Its proton conductivity linearly increased from 0.068 S/cm at 25 °C to 0.095 S/cm at 120 °C, which was higher than 0.06 S/cm of Nafion 117. In contrast, proton conductivity of pure SPEEKS‐4 membrane only increased from 0.062 S/cm at 25 °C to 0.078 S/cm at 80 °C. At 120 °C, proton conductivity decreased to poor 0.073 S/cm. The result indicated that composite membranes exhibited high proton conductivity at high temperature. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1967–1978, 2006  相似文献   

10.
A new monomer, 4,4′‐bis(4‐phenoxybenzoyl)diphenyl(BPOBDP), was synthesized via a two‐step synthetic procedure. A series of novel poly(ether sulfone ether ketone ketone)/poly(ether ketone diphenyl ketone ether ketone ketone) copolymers were prepared by electrophilic Friedel–Crafts solution copolycondensation of isophthaloyl chloride (IPC) with a mixture of 4,4′‐diphenoxydiphenylsulfone (DPODPS) and 4,4′‐bis(4‐phenoxybenzoyl)diphenyl (BPOBDP), in the presence of anhydrous aluminum chloride and N‐methylpyrrolidone (NMP) in 1,2‐dichloroethane (DCE). The copolymers with 10–50 mol% DPODPS are semicrystalline and have remarkably increased Tgs over commercially available PEEK and PEKK. The copolymers with 40–50 mol% DPODPS had not only high Tgs of 170–172°C, but also moderate Tms of 326–333°C, which are extremely suitable for melt processing. These copolymers have tensile strengths of 96.5–108.1 MPa, Young's moduli of 1.98–3.05 GPa, and elongations at break of 13–26% and exhibit excellent thermal stability and good resistance to acidity, alkali, and common organic solvents. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
This paper reports on the preparation and characterization of sulfonated poly(ether ether ketone) (sPEEK)-based mixed matrix membranes. The inorganic matrix consisted of silica: Aerosil®380, tetraethoxysilane (TEOS) or a combination of both to obtain an interconnected silica network. The behavior of these membranes in ethanol–water systems was studied for application in a direct ethanol fuel cell (DEFC). Uptake measurements showed that the converted TEOS content had a strong influence on the hydrophilicity of the membranes. Proton conductivity was strongly related to the water content in the membrane, but the proton diffusion coefficients of membranes with various Aerosil®380–TEOS combinations were similar. Dynamic measurements in liquid–liquid (L–L) and liquid–gas (L–G) systems were performed to study the ethanol transport through the membrane. No reduction in ethanol permeability was obtained in the L–L system, but a remarkable reduction was obtained in the L–G system when 2 M ethanol was applied. The reinforcing characteristic of the combined Aerosil®380–TEOS-system were best observed at 40 °C with 4 M ethanol. The fuel cell performance prediction based on the selectivity of proton diffusion coefficient to ethanol permeability coefficient showed for nearly all composite membranes an improvement with respect to the polymeric reference. The presence of an inorganic phase led to relatively constant proton diffusion coefficients and lower ethanol permeability coefficients in comparison with the polymeric reference.  相似文献   

12.
Polymer blends of sulfonated poly(ether ether ketone) (SPEEK) and poly(ether sulfone) (PES) in N-methyl-2-pyrrolidinone (NMP) were prepared by solution casting. The investigation on water uptake, methanol uptake, permeability and proton conductivity has been conducted. The spin-lattice relaxation time in the rotating frame of PES/SPEEK blend was obtained from the results of cross-polarization magic angle spinning (CP/MAS) solid state 13C NMR. SPEEK blended with PES resulted in increasing , indicating the molecular motion of polymer chain was reduced. The glass transition temperature of the PES/SPEEK blend membranes were predicted by the Kwei equation. PES plays an important role in the decreasing water uptake, methanol uptake and methanol permeability while enhancing the thermal stability of the blend membrane, which shows the feasibility for direct methanol fuel cell.  相似文献   

13.
Polymer blending is used to modify or improve the dimensional and thermal stability of any two different polymers or copolymers. In this study, both sulfonated polybenzimidazole homopolymer (MS-p-PBI 100) and sulfonated poly(aryl ether benzimidazole) copolymers (MS-p-PBI 50, 60, 70, 80, 90) were successfully synthesized from commercially available monomers. The chemical structure and thermal stability of these polymers was characterized by 1H NMR, FT-IR and TGA techniques. Blend membranes (BMs) were prepared from the salt forms of sulfonated poly(ether sulfone) (PES 70) and MS-p-PBI 100 using dimethylacetamide (DMAc). These blend membranes exhibited good stability in boiling water. The blending of 1 wt.% of MS-p-PBI 100 and 99 wt.% of PES 70 to produce the blend membrane BM 1 reduced membrane swelling, thus leading to good dimensional stability and comparable proton conductivity. Hence, BM 1 was chosen for the fabrication of a membrane electrode assembly (MEA) for proton exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC) applications. This paper reports on PEMFC and DMFC performance under specific conditions.  相似文献   

14.
A series of sulfonated poly(ether ether ketone)/monoethanolamine/adipic acid (SPEEK/MEA/AA) composite membranes are prepared and investigated to assess their possibility as proton exchange membranes in direct methanol fuel cells (DMFCs). A preliminary evaluation shows that introducing MEA and AA into SPEEK matrix decreases the thermal stability of membrane. However, the degradation temperatures are still above 260 °C, satisfying the requirement for fuel cell operation. Compared with the pure SPEEK membrane, the composite membranes exhibit not only lower water uptake and swelling ratios but also better mechanical property and oxidative stability. Noticeably, the methanol diffusion coefficient of the composite membranes decrease significantly from 3.15 × 10?6 to 0.76 × 10?6 cm2/s with increasing MEA and AA content, accompanied by only a small sacrifice in proton conductivity. Although both the methanol diffusion coefficient and the proton conductivity of composite membranes are lower than those of pure SPEEK and Nafion® 117 membranes, their selectivity (conductivity/methanol diffusion coefficient) are higher. In addition, the composite membranes show excellent stability in aqueous methanol solution. The good thermal and chemical stability, low swelling ratio, excellent mechanical property, low methanol diffusion coefficient, and high selectivity make the use of these composite membranes in DMFCs quite attractive. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2871–2879, 2007  相似文献   

15.
One new synthesis route was first designed to synthesize the biphenyl acid chloride (BPACl), and then a series of novel poly (aryl ether nitrile ether ketone ketone) (PENEKK)/poly (aryl ether nitrile ether ketone biphenyl ketone) (PENEKBK) copolymers with different controlled structure compositions were synthesized by electrophilic polycondensation and varying the molar ratio of BPACl to terephthaloyl chloride (TPC). The obtained PENEKK/PENEKBK copolymers were characterized by different physical and chemical techniques. The results showed, the copolymers with 10–50% molar contents of biphenyl moities exhibited good thermal properties with glass transition temperatures (Tgs) of 184–196°C, decomposition temperatures (Tds) of 498–515°C, and good solubility in organic solvents (N‐Methyl‐2‐pyrrolidone (NMP), N,N‐dimethylformamide (DMF), and DMSO), indicating that they would have good potential for solvent processing. The thin films of the polymers had tensile strengths of 93.6–101.5 MPa, Young's moduli of 3.03–3.32 GPa, elongations at break of 9–14%, indicating they were strong materials. The densities of the obtained polymers were 1.31–1.40 g/cm?3, which were far lower than those of some main inorganic materials (such as Fe, nearly 7.8 g/cm?3), indicating that they would have possible potential for substituting some inorganic materials used as high temperature materials in some areas due to the merits of lightweight. Thus, the copolymers with 10–50% molar contents of biphenyl moities were promising polymer materials. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
This paper describes a study of the crystallization behaviour of blends consisting of the polymers poly (ether ether ketone) (PEEK) and poly (ether imide) (PEI) using Fourier transform Raman spectroscopy. The annealing process of PEEK was followed for the virgin polymer and also when it was blended with PEI. The data presented show that the crystallization process of PEEK is inhibited by the presence of the PEI, but the extent of the crystallinity is increased. There is also evidence that the presence of the PEI induces premelting of the PEEK.  相似文献   

17.
The supercritical CO2 (sc‐CO2) provided a moderate condition to make the amorphous CO2/poly(ether ether ketone) (PEEK) mixtures at 30 MPa and 40 °C. The crystal is obtained directly after treating CO2/PEEK mixture from 70 to 240 °C. The crystallization behavior of CO2/PEEK mixtures before and after treatment is investigated in detail by using differential scanning calorimetry (DSC), dynamic mechanical analysis, and wide‐angle X‐ray diffraction. DSC curves of CO2/PEEK samples showed the double cold crystallization peaks. The lower cold crystallization peak moves to higher temperature with the content of CO2 decreasing, and the higher cold crystallization peak keeps their temperatures at about 172 °C without a remarkable change. The dynamic mechanical spectrometry was also introduced to explain the relaxation behavior of the glass transition and crystallization. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2927–2936, 2007  相似文献   

18.
The effect of irradiating amorphous poly (ether ether ketone), PEEK, with ions, 11 MeV proton (H+), and 25.6 MeV helium (He2+), has been investigated focusing on the changes in thermal properties. The extent of chain scission and crosslinking was evaluated using the Charlesby‐Pinner equation. Crosslinking increased the glass transition temperature (Tg) in line with the DiBenedetto equation from which the crosslinking constant for each ion was calculated. The effect of irradiation on the thermal degradation kinetics was studied in an argon atmosphere at a constant heating rate by mean of the Chang and the second Kissinger methods. Irradiation significantly reduced the thermal stability of the polymer and its service lifetime. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2212–2221, 2008  相似文献   

19.
The major risk of using carbon nanotubes (CNTs) to modify proton exchange membranes (PEMs) in fuel cells is possible short‐circuiting due to the excellent electrical conductivity of CNTs. In this article, silica‐coated CNTs (SiO2@CNTs) were successfully prepared by a simple sol–gel process and then used as a new additive in the preparation of sulfonated poly (ether ether ketone) (SPEEK)‐based composite membranes. The insulated and hydrophilic silica coated on the surface of CNTs not only eliminated the risk of short‐circuiting, but also enhanced the interfacial interaction between CNTs and SPEEK, and hence promoted the homogeneous dispersion of CNTs in the SPEEK matrix. Moreover, compared to the methanol permeability of the pure SPEEK membrane (3.42 × 10?7 cm2 s?1), the SPEEK/SiO2@CNT composite membrane with a SiO2@CNT loading of 5 wt% exhibits almost one order of magnitude decrease of methanol crossover, while the proton conductivity still remained above 10?2 S cm?1 at room temperature. The obtained results expose the possibility of SPEEK/SiO2@CNT membranes to be served as high‐performance PEMs in direct methanol fuel cells. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Dielectric relaxation spectroscopy (DRS) and dynamic mechanical thermal analysis (DMTA) were used to investigate the secondary relaxation behaviour of poly(ether ether ketone) (PEEK), poly(etherimide) (PEI) and a miscible PEEK/PEI blend. The data from each technique, for the γ-process, did not lie on the same Arrhenius line, while the rate of molecular motion of the γ-process in the blends was largely an average of each component's motions. The β-process in PEI was plasticised by the presence of PEEK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号