首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The well-posedness of the equations governing the flow of fiber suspensions is studied. The fluid is assumed to be Newtonian and incompressible, and the presence of fibers is accounted for through the use of second- and fourth-order orientation tensors, which model the effects of the orientation of fibers in an averaged sense. The fourth-order orientation tensor is expressed in terms of the second-order tensor through various closure relations. It is shown that the linear closure relation leads to anomalous behavior, in that the rest state of the fluid is unstable, in the sense of Liapounov, for certain ranges of the fiber particle number. No such anomalies arise in the case of quadratic and hybrid closure relations. For the quadratic closure relation, it is shown that a unique solution exists locally in time for small data.  相似文献   

2.
Numerical simulations of the flow of rigid fibres through a 4:1 planar contraction, and the predicted flow pattern and fiber orientation are presented. Entirely new is the examination of the nature of the suspending matrix which may consist of either a Newtonian fluid or a polymer melt. In the case of a polymer matrix three rheological models, the Phan-Thien–Tanner, FENE-CR, and Carreau models have been used to investigate the effects of shear-thinning and elasticity on the flow and the orientation of the fibers. The effects of inertia are neglected, and the governing equations for the flow field, polymer stress, and fiber orientation are coupled and simultaneously solved. A parametric study is used to explore the effects of different dimensionless parameters on the velocity field, the fiber orientation, the pressure drop, as well as the vortex size measured by the dimensionless reattachment length. We particularly focus on the role of the fibers aspect ratio, volume fraction, and interaction coefficient which measures the intensity of fiber interaction in the suspension. Furthermore, we evaluate and compare the results of four different closure approximations: the quadratic, linear, hybrid A and T, and natural closures.  相似文献   

3.
The kinetic theory of elastic dumbells with a friction factor that depends on the fiber orientation is used to obtain constitutive equations for fiber suspensions in a polymer matrix. We followed the approach of Fan (X.J. Fan, in P. Moldenaers and R. Keunings (Eds.), Theoretical and Applied Rheology, Proceedings XIth International Congress on Rheology, Brussels, Elsevier, Amsterdam, 1992, pp. 850–852), and derived equations for polymer solutions based on the FENE-P, FENE-CR, and Giesekus models. Start-up and steady-state free shear flows are studied to explore the effects of the fiber-polymer coupling as well as the fiber volume fraction. Predictions based on different types of closure approximations for the fourth-order fiber orientation tensor are also discussed.  相似文献   

4.
5.
Some of the problems associated with applying currently available viscous flow calculation schemes to turbulent flow in gas-turbine blading and passages are reviewed. These flows pose severe difficulties in both numerics and turbulence modelling, although the main emphasis here is on the latter aspect. Since complex strain fields and strong body forces are an intrinsic part of flow in turbomachinery, it is preferable that the turbulence modelling of these flows be based on an approximation of the Reynolds stress transport equations themselves. Some current views on closure approximations for these equations are discussed. Applications considered include the effects of free stream turbulence and streamline curvature, the mixing of blade wakes, and the three-dimensional flows that arise in a 90° bend and in the corner boundary layer near a blade root  相似文献   

6.
We present a unified constitutive model capable of predicting the steady shear rheology of polystyrene (PS)–nanoparticle melt composites, where particles can be rods, platelets, or any geometry in between, as validated against experimental measurements. The composite model incorporates the rheological properties of the polymer matrix, the aspect ratio and characteristic length scale of the nanoparticles, the orientation of the nanoparticles, hydrodynamic particle–particle interactions, the interaction between the nanoparticles and the polymer, and flow conditions of melt processing. We demonstrate that our constitutive model predicts both the steady rheology of PS–carbon nanofiber composites and the steady rheology of PS–nanoclay composites. Along with presenting the model and validating it against experimental measurements, we evaluate three different closure approximations, an important constitutive assumption in a kinetic theory model, for both polymer–nanoparticle systems. Both composite systems are most accurately modeled with a quadratic closure approximation.  相似文献   

7.
8.
Numerical solutions are presented for the natural convection heat transfer from an elliptic heat source buried beneath a semi-infinite, saturated, porous medium. The surface of the medium is assumed to be permeable. The governing equations for Darcy flow are solved using finite differences. The complicated geometry is handled through the use of a body-fitted curvilinear coordinate system. Results are presented for Ra values ranging from 10 to 200 and ellipse aspect ratio values from 1.0 (circular cylinder) to 0.167. Two body orientations have been considered. The slender orientation yields much higher hear transfer rates (especially at low ellipse aspect ratio values) than the blunt orientation. The numerical simulations indicate that the boundary-layer approximations cannot be employed for low ellipse aspect ratios. In addition, the heat loss does not depend on the burial depth.  相似文献   

9.
Equations are written for the velocities of rotation and translation of rigid rod-like particles suspended in arbitrary Stokes flows. These make use of the first approximation from slender body theory for the evaluation of drag forces parallel and transverse to the particle axis, and neglect couples induced by shear stress at the particle surface. They are therefore asymptotically valid as the particle axis ratio becomes large. Simple forms of the equations, applying in constant viscosity flows, are solved, where possible analytically and otherwise numerically, and results obtained for particle motion in planar Poiseuille and sink flows. These are discussed and displayed in terms of appropriate dimensionless groups in a comprehensive set of plots, that can conveniently be used to provide information on translational and rotational velocities, and orientation and displacement as a function of time, including particle slip along and across streamlines, for a wide range of cases. In this way the effects of non-homogeneity in the flow fields are quantified.  相似文献   

10.
We have investigated the orientation state of a dilute fiber suspension flow in a planar contraction at high Reynolds numbers in turbulent flow. High speed imaging is used to directly measure the orientation distribution function at different downstream positions along the contraction centerline. The results from the direct measurement of the orientation distribution are used to evaluate the existing closure models. The results show that the fitted orthotropic and natural closure approximations give almost identical results with the best agreement to the orientation distribution in the contraction flow considered here.  相似文献   

11.
A system of nonlinear equations for describing the perturbations of the pressure and radius in fluid flow through a viscoelastic tube is derived. A differential relation between the pressure and the radius of a viscoelastic tube through which fluid flows is obtained. Nonlinear evolutionary equations for describing perturbations of the pressure and radius in fluid flow are derived. It is shown that the Burgers equation, the Korteweg-de Vries equation, and the nonlinear fourth-order evolutionary equation can be used for describing the pressure pulses on various scales. Exact solutions of the equations obtained are discussed. The numerical solutions described by the Burgers equation and the nonlinear fourth-order evolutionary equation are compared.  相似文献   

12.
In this paper a model was developed to describe the shear flow resistance force and torque acting on a fine particle as it slides on the slip surface of a rising gas bubble. The shear flow close to the bubble surface was predicted using a Taylor series and the numerical data obtained from the Navier–Stokes equations as a function of the polar coordinates at the bubble surface, the bubble Reynolds number, and the gas hold-up. The particle size was considered to be sufficiently small relative to the bubble size that the bubble surface could be locally approximated to a planar interface. The Stokes equation for the disturbance shear flows was solved for the velocity components and pressure using series of bispherical coordinates and the boundary conditions at the no-slip particle surface and the slip bubble surface. The solutions for the disturbance flows were then used to calculate the flow resistance force and torque on the particle as a function of the separation distance between the bubble and particle surfaces. The resistance functions were determined by dividing the actual force and torque by the corresponding (Stokes) force and torque in the bulk phase. Finally, numerical and simplified analytical rational approximate solutions for force correction factors for sliding particles as a function of the (whole range of the) separation distance are presented, which are in good agreement with the exact numerical result and can be readily applied to more general modelling of the bubble–particle interactions.  相似文献   

13.
Employing the geometrically exact approach, the governing equations of nonlinear planar motions around nonshallow prestressed equilibrium states of slender beams are derived. Internal kinematic constraints and approximations are introduced considering unshearable extensible and inextensible beams. The obtained approximate models, incorporating quadratic and cubic nonlinearities, are amenable to a perturbation treatment in view of asymptotic solutions. The different perturbation schemes for the two mechanical beam models are discussed.  相似文献   

14.
A differential constraint method is used to obtain analytical solutions of a second-grade fluid flow. By using the first-order differential constraint condition, exact solutions of Poiseuille flows, jet flows and Couette flows subjected to suction or blowing forces, and planar elongational flows are derived. In addition, two new classes of exact solutions for a second-grade fluid flow are found. The obtained exact solutions show that the non-Newtonian second-grade flow behavior depends not only on the material viscosity but also on the material elasticity. Finally, some boundary value problems are discussed.  相似文献   

15.
The paper studies unsteady Navier–Stokes equations with two space variables. It shows that the non-linear fourth-order equation for the stream function with three independent variables admits functional separable solutions described by a system of three partial differential equations with two independent variables. The system is found to have a number of exact solutions, which generate new classes of exact solutions to the Navier–Stokes equations. All these solutions involve two or more arbitrary functions of a single argument as well as a few free parameters. Many of the solutions are expressed in terms of elementary functions, provided that the arbitrary functions are also elementary; such solutions, having relatively simple form and presenting significant arbitrariness, can be especially useful for solving certain model problems and testing numerical and approximate analytical hydrodynamic methods. The paper uses the obtained results to describe some model unsteady flows of viscous incompressible fluids, including flows through a strip with permeable walls, flows through a strip with extrusion at the boundaries, flows onto a shrinking plane, and others. Some blow-up modes, which correspond to singular solutions, are discussed.  相似文献   

16.
Particle dynamics in a channel flow are investigated using large eddy simulation and a Lagrangian particle tracking technique. Following validation of single-phase flow predictions against DNS results, fluid velocities are subsequently used to study the behaviour of particles of differing shape assuming one-way coupling between the fluid and the particles. The influence of shape- and orientation-dependent drag and lift forces on both the translational and rotational motion of the particles is accounted for to ensure accurate representation of the flow dynamics of non-spherical particles. The size of the particles studied was obtained based on an equivalent-volume sphere, and differing shapes were modelled using super-quadratic ellipsoid forms by varying their aspect ratio, with their orientation predicted using the incidence angle between the particle relative velocity and the particle principal axis. Results are presented for spherical, needle- and platelet-like particles at a number of different boundary layer locations along the wall-normal direction within the channel. The time evolution and probability density function of selected particle translational and rotational properties show a clear distinction between the behaviour of the various particles types, and indicate the significance of particle shape when modelling many practically relevant flows.  相似文献   

17.
In the present work, the effect of mixed convection about vertical surfaces on the phenomenon of melting process in a fluid-saturated porous medium is analyzed on the basis of boundary layer approximations. Similarity solutions are obtained for aiding external flow. The final similarity equations are integrated numerically by use of the fourth-order Runge–Kutta method. Results are reported for the flow and thermal fields in the melt region. The melting phenomenon decreases the local Nusselt number at the solid–liquid interface.  相似文献   

18.
In this article a parametric study based on a balance between viscous drag and restoring Brownian forces is used in order to construct a nonlinear dumbbell model with a finite spring and a drag correction for a dilute polymer solution. The constitutive equations used are reasonable approximation for describing flows of very dilute polymer solutions such as those used in turbulent drag reduction. We investigate the response of an elastic liquid under extensional flows in order to explore the roles of a stress anisotropy and of elasticity in strong flows. It is found that for low Reynolds numbers, the extensional viscosity of a dilute polymer solution is governed by two parameters: a Deborah number representing the importance of the elasticity on the flow and the macromolecule extensibility that accounts for the viscous anisotropic effects caused by the macromolecule orientation. Two different asymptotic regimes are described.The first corresponds to an elastic limit in which the extensional viscosity is a function of the Deborah number and the particle volume fraction. The second is an anisotropic regime with the extensional viscosity independent of Deborah number but strongly dependent on macromolecule aspect ratio. The analysis may explain from a phenomenological point of view why few ppms of macromolecules of high molecule weight or a small volume fraction of long fibres produce important attenuation of the pressure drop in turbulent flows. On the basis of our analysis it is seen that the anisotropic limit of the extensional viscosity caused by extended polymers under strong flows should play a key role in the attenuation of flow instability and in the mechanism of drag reduction by polymer additives.  相似文献   

19.
In this work we present a new numerical strategy to treat the 3D Fokker–Planck equation in steady recirculating flows. This strategy combines some ideas of the method of particles, with a more original treatment of the periodicity condition, which characterizes the steady solution of the FP equation in steady recirculating flows, as usually encountered in some rheometric devices. Using this numerical technique the fiber orientation distribution can be computed accurately in any steady recirculating flow. The simulation results can be used to identify some rheological parameters of the suspension, using an inverse technique, as well as to analyze the validity of some simplified models widely used, which require a closure relation. Thus, in this paper several closure relations of the fourth-order orientation tensor will be discussed in the context of a numerical example involving a steady recirculating flow.  相似文献   

20.
The reduced Navier–Stokes and thin layer approximations to the Navier–Stokes equations are used to obtain solutions for viscous subsonic three-dimensional flows. A spatial marching method is combined with a direct sparse matrix solver to obtain successive solutions in a global relaxation process. Results have been obtained for flow fields with and without regions of flow reversal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号