首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
d-erythro (2S, 3R) sphingomyelin (C24:0-SM) whose acyl chain was 24 carbons long was synthesized by the acylation of d-erythro-sphingosylphosphorylcholine. Reversible and reproducible transitions of the SM was attained for the first time by thermal annealing adopted for its dispersion at a temperature of the main gel-to-liquid crystal transition up to periods as long as 5 h. This fact indicated that the main transition of the SM involved another component proceeding at an extremely slow rate, in addition to the well-known fast rate chain-melting component. A schematic diagram of relative enthalpy versus temperature curves for the gel (I), gel (II), and liquid crystal phases was constructed from a repeated cycle DSC and the thermodynamic stability of the three phases was evaluated for varying annealing periods. Electron microscopic experiments showed lamellae stacks with planer surfaces for all the three phases of the highest stability, which contrasted with small size, unilamellar vesicles observed for all the phases of the lowest stability. Such a markedly different structure for the highly asymmetry SM suggested that a change in chain packing arrangement, presumably from a full to a partial interdigitation, occurred at the main transition and proceeded gradually at the transition temperature over a period up to 5 h.  相似文献   

2.
Sphingomyelin (SM) is an important lipid of eukaryotic cellular membranes and neuronal tissues. We studied lateral diffusion in macroscopically oriented bilayers of synthetic palmitoylsphingomyelin (PSM) and natural sphingomyelins of egg yolk (eSM), bovine brain (bSM) and bovine milk (mSM) by pulsed field gradient NMR (PFG NMR) in the temperature range 45-60 °C. We found that the mean values of lateral diffusion coefficients (LDCs) of SMs are 1.9-fold lower compared with those of dipalmitoylphosphatidylcholine (DPPC), which is similar in molecular structure. This discrepancy could be explained by the characteristics of intermolecular SM interactions. The LDCs of different SMs differ: egg SM is most similar to PSM; both of them have a 10% higher LDC value compared with the other two natural SMs. Besides, all natural SMs show a complicated form of the spin-echo diffusion decay (DD), which is an indicator of a distribution of LDC values in bilayers. This peculiarity is explained by the broad distributions of hydrocarbon chain lengths of the natural SMs studied here, especially mSM and bSM. We confirmed the relationship between chain length and LDC in the bilayers by computer analysis of a set of (1)H NMR spectra obtained by scanning the value of the pulsed field gradient. There is a correlation between lower LDC values and SM molecules with longer acyl chains. The most probable mechanisms by which long-chain SM molecules decrease their lateral diffusion relative to the average value are protrusion into the other side of the bilayer or lateral separation into areas that diverge with their LDCs.  相似文献   

3.
A combination of vibrational sum frequency generation spectroscopy and atomic force microscopy is used to study the changes in morphology and conformational order in monolayers prepared from three natural sphingomyelin (SM) mixtures as a function of surface pressure and cholesterol concentration. The most homogeneous SM gave monolayers with well-ordered acyl chains and few gauche defects with relatively small effects of either increasing surface pressure or cholesterol addition. Heterogeneous SM mixtures with a mixture of acyl chain lengths or with significant fractions of unsaturated acyl chains had much larger contributions from gauche defects at low surface pressure and gave increasingly well-ordered monolayers as the surface pressure increased. They also showed substantial increases in lipid chain order after cholesterol addition. Overall, these results are consistent with the strong hydrogen bonding capacity of SM leading to well-ordered monolayers over a range of surface pressures. The changes in acyl chain order for natural SMs as a function of cholesterol are relevant to formation of sphingolipid-cholesterol enriched domains in cell membranes.  相似文献   

4.
The micellization process of a series of dissymmetric cationic gemini surfactants [CmH2m+1(CH3)2N(CH2)6N(CH3)2C6H13]Br2 (designated as m-6-6 with m = 12, 14, and 16) and their interaction with dimyristoylphosphatidylcholine (DMPC) vesicles have been investigated. In the micellization process of these gemini surfactants themselves, critical micelle concentration (cmc), micelle ionization degree, and enthalpies of micellization (DeltaHmic) were determined, from which Gibbs free energies of micellization (DeltaGmic) and entropy of micellization (DeltaSmic) were derived. These properties were found to be influenced significantly by the dissymmetry in the surfactant structures. The phase diagrams for the solubilization of DMPC vesicles by the gemini surfactants were constructed from calorimetric results combining with the results of turbidity and dynamic light scattering. The effective surfactant to lipid ratios in the mixed aggregates at saturation (Resat) and solubilization (Resol) were derived. For the solubilization of DMPC vesicles, symmetric 12-6-12 is more effective than corresponding single-chain surfactant DTAB, whereas the dissymmetric m-6-6 series are more effective than symmetric 12-6-12, and 16-6-6 is the most effective. The chain length mismatch between DMPC and the gemini surfactants may be responsible for the different Re values. The transfer enthalpy per mole of surfactant within the coexistence range may be associated with the total hydrophobicity of the alkyl chains of gemini surfactants. The transfer enthalpies of surfactant from micelles to bilayers are always endothermic due to the dehydration of headgroups and the disordering of lipid acyl chain packing during the vesicle solubilization.  相似文献   

5.
The use of amino acids for the synthesis of novel surfactants with vesicle-forming properties potentially enhances the biocompatibility levels needed for a viable alternative to conventional lipid vesicles. In this work, the formation and characterization of catanionic vesicles by newly synthesized lysine- and serine-derived surfactants have been investigated by means of phase behavior mapping and PFG-NMR diffusometry and cryo-TEM methods. The lysine-derived surfactants are double-chained anionic molecules bearing a pseudogemini configuration, whereas the serine-derived amphiphile is cationic and single-chained. Vesicles form in the cationic-rich side for narrow mixing ratios of the two amphiphiles. Two pairs of systems were studied: one symmetric with equal chain lengths, 2C12/C12, and the other highly asymmetric with 2C8/C16 chains, where the serine-based surfactant has the longest chain. Different mechanisms of the vesicle-to-micelle transition were found, depending on symmetry: the 2C12/C12 system entails limited micellar growth and intermediate phase separation, whereas the 2C8/C16 system shows a continuous transition involving large wormlike micelles. The results are interpreted on the basis of currently available models for the micelle-vesicle transitions and the stabilization of catanionic vesicles (energy of curvature vs mixing entropy).  相似文献   

6.
Experimental data on acyl radical decomposition reactions (RC·O → R· + CO, where R = alkyl or aryl) are analyzed in terms of the intersecting parabolas method. Kinetic parameters characterizing these reactions are calculated. The transition state of methyl radical addition to CO at the C atoms is calculated using the DFT method. A semiempirical algorithm is constructed for calculating the transition state geometry for the decomposition of acyl radicals and for the reverse reactions of R· addition to CO. Kinetic parameters (activation energy and rate constant) and geometry (interatomic distances in the transition state) are calculated for 18 decomposition reactions of structurally different acyl radicals. A linear correlation between the interatomic distance r #(C…C) (or r #(C…O)) in the transition state the enthalpy of the reaction (δH e) is established for acyl decomposition reactions (at br e = const). A comparative analysis of the enthalpies, activation energies, and interatomic distances in the transition state is carried out for the decomposition and formation of acyl, carboxyl, and formyl radicals.  相似文献   

7.
After adding cholesterol, the sphingosine backbones (red) of the three nature SMs become more ordered, and the N-linked acyl chain (blue) remains unaltered.  相似文献   

8.
We investigated characteristics of various phosphatidylcholines (PCs) used as dispersing agents and emulsifiers. Six PCs with different lengths of acyl hydrocarbon chains and different degrees of unsaturated acyl hydrocarbon chains were selected to examine influences of a lipophillic part of phosphatidylcholines in emulsion and dispersion systems. Vesicles and oil-in-water emulsions were prepared by sonication under several ambient temperature conditions. Mean diameters of vesicles and oil droplets in emulsions were measured by a submicron particle sizer. In vesicles that are generated by hydration of the PCs and have a bilayer form, particle size was influenced by length and degree of unsaturation of acyl hydrocarbon chains of a PC. PCs with shorter acyl hydrocarbon chains or unsaturated bonds are considered more potent dispersing agents. Preparation temperature of the PC is also a factor affecting potency of dispersion. In O/W emulsions in which PCs were absorbed at water-oil interfaces and which have a single layer form or liquid-crystal layer form, particle size was also influenced by length and degree of unsaturation of acyl hydrocarbon chains of a PC. PCs with shorter and saturated acyl hydrocarbon chains are considered more potent emulsifiers. Unsaturation of acyl hydrocarbon chains weaken the ability of emulsification due to vulnerable double bonds. For stable emulsions, it is considered beneficial for PCs to form small oil droplets and lamellae liquid-crystal phase. From this perspective, saturated PCs with short hydrocarbon chains, i.e., DLPC and DMPC, may have advantages in preparing a stable emulsion not only by giving a smaller droplet size but also by forming lamellae liquid-crystal phase. When considering characteristics of PCs as emulsifiers, their characteristics as dispersing agents is also useful information.  相似文献   

9.
Atomistic detailed hydration structures of poly(vinyl methyl ether)(PVME) have been investigated by molecular dynamics simulations under 300 K at various concentrations. Both radial distribution functions and the distance distributions between donors and acceptors in hydrogen bonds show that the hydrogen bonds between the polymer and water are shorter by 0.005 nm than those between water molecules. The Quasi-hydrogen bonds take only 7.2% of the van der Waals interaction pairs. It was found the hydrogen bonds are not evenly distributed along the polymer chain,and there still exists a significant amount(10%) of ether oxygen atoms that are not hydrogen bonded to water at a concentration as low as 3.3%. This shows that in polymer solutions close contacts occur not only between polymer chains but also between chain segments within the polymer,which leads to inefficient contacts between ether oxygen atoms and water molecules. Variation of the quasi-hydrogen bonds with the concentration is similar to that of hydrogen bonds,but the ratio of the repeat units forming quasi-hydrogen bonds to those forming hydrogen bonds approaches 0.2. A transition was found in the demixing enthalpy at around 30% measured by dynamic testing differential scanning calorimetry(DTDSC) for aqueous solutions of a mono-dispersed low molecular weight PVME,which can be related to the transition of the fractions of hydrogen bonds and quasi-hydrogen bonds at ~27%. The transition of the fractions of hydrogen bonds and quasi-hydrogen bonds at ~27% can be used to explain the demixing enthalpy transition at 30% at a molecular scale. In addition,at the concentration of 86%,each ether oxygen atom bonded with water is assigned 1.56 water molecules on average,and 'free' water molecules emerge at the concentration of around 54%.  相似文献   

10.
Liquid chromatography coupled to atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI) mass spectrometry (MS), in parallel, was used for simultaneous detection of bovine milk sphingolipids (BMS). APCI-MS mass spectra exhibited mostly ceramide-like fragment ions, [Cer-H(2)O+H](+) and [Cer-2H(2)O+H](+), which were used to identify individual molecular species of BMS according to fatty acyl chain length:degree of unsaturation and long-chain base (LCB). ESI-MS was used to confirm the molecular weights of BMS species. Both sphingomyelin (SM) and dihydrosphingomyelin (DSM) molecular species were identified, with DSM species constituting 20% of BMS. Approximately 56 to 58% of DSM species contained a d16:0 LCB, while 34 to 37% contained a d18:0 LCB. Approximately 26 to 30% of SM species contained a d16:1 LCB, while 57 to 60% contained a d18:1 LCB. BMS species contained both odd and even carbon chain lengths. The most abundant DSM species contained a d16:0 LCB with a 22:0, 23:0 or 24:0 fatty acyl chain, while the most abundant SM species contained a d18:1 LCB with a 16:0 or 23:0 fatty acyl chain. (31)P NMR spectroscopy was used to conclusively confirm that DSM is a dietary component in BMS.  相似文献   

11.
The strengthening of the hydrogen bonding (H-bond) network as well as transition from the tetrahedral-like water network to the zigzag chain structure of alcohol upon increasing the alcohol concentration in ethanol-water and tertiary butanol (TBA) — water mixtures have been studied by using both steady state and time resolved spectroscopy. Absorption and emission characteristics of coumarin 153 (C153), a widely used non-reactive solvation probe, have been monitored to investigate the structural transition in these binary mixtures. The effects of the hydrogen bond (H-bond) network with alcohol concentration are revealed by a minimum in the peak frequency of the absorption spectrum of C153 which occur at alcohol mole fraction ∼0·10 for water-ethanol and at ∼0·04 for water-TBA mixtures. These are the mole fractions around which several thermodynamic properties of these mixtures show anomalous change due to the enhancement of H-bonding network. While the strengthening of H-bond network is revealed by the absorption spectra, the emission characteristics show the typical non-ideal alcohol mole fraction dependence at all concentrations. The time resolved anisotropy decay of C153 has been found to be bi-exponential at all alcohol mole fractions. The sharp change in slopes of average rotational correlation time with alcohol mole fraction indicates the structural transition in the environment around the rotating solute. The changes in slopes occur at mole fraction ∼0·10 for TBA-water and at ∼0·2 for ethanol-water mixtures, which are believed to reflect alcohol mole fraction induced structural changes in these alcohol-water binary mixtures.  相似文献   

12.
Poly(ethylene oxide) (PEO) oligomers having alkali metal thiolate groups on the chain ends (PEO m -SM+) were prepared as an ion conductive matrix. The molecular weight of the PEO part (m) and the content of the thiolate groups in the molecule were changed to analyze the effect of carrier ion concentration in the bulk. In a series of potassium salt derivatives, PEO350-SK showed the highest ionic conductivity of 6.42 × 10−5 S/cm at 50 °C. In spite of a poor degree of dissociation which was derived from the acidity of the thiolate groups, PEO m -SM showed quite high ionic conductivity among other PEO/salt hybrids. PEO m -SM had glass transition temperatures (T g) 20 °C lower than other PEO/salt hybrids. Lowering the T g was concluded to be effective in providing higher ionic conductivity for PEO-based polymer electrolytes. Received: 30 April 1999 / Accepted: 20 June 1999  相似文献   

13.
Hydration properties of lipid bilayer systems are compared for symmetric chain sphingomyelin (N-palmitoylsphingomyelin) and asymmetric chain sphingomyelin (N-lignoceroylsphingomyelin). These sphingomyelins were semisynthesized by a deacylation- reacylation process with a natural sphingomyelin used as a starting material. The number of differently bound water molecules was estimated by a deconvolution analysis of the ice-melting curves obtained by a differential scanning calorimetry (DSC) and was used to construct a water distribution diagram for these water molecules. Similarly to a natural sphingomyelin used for comparison, the asymmetric chain sphingomyelin was found to form small size vesicles having an internal cavity and incorporate 15 water molecules per molecule of lipid into its cavity, in contrast with 5 H2O/lipid for freezable interlamellar water observed for large size multilamellar vesicles formed by the symmetric chain sphingomyelin.  相似文献   

14.
Cubic zinc oxide (rs-ZnO), metastable under normal conditions, was synthesized from the wurtzite modification (w-ZnO) at 7.7 GPa and ∼800 K in the form of nanoparticles isolated in the NaCl matrix. The phase transition rs-ZnO → w-ZnO in nanocrystalline zinc oxide under ambient pressure was experimentally studied for the first time by using differential scanning calorimetry and high-temperature X-ray diffraction analysis. It was shown that the transition occurs in the temperature range from 370 to 430 K and its enthalpy at 400 K is −10.2 ± 0.5 kJ mol−1.  相似文献   

15.
Several lipids of biological interest are able to form monomolecular surfaces with a rich variety of thickness and lateral topography that can be precisely controlled by defined variations of the film composition. Ceramide is one of the simplest sphingolipids, consisting of a sphingosine base N-linked to a fatty acid, and is a membrane mediator for cell-signaling events. In this work, films of ceramides N-acylated with the saturated fatty acids C10, C12, C14, and C16 were studied at the air-aqueous interface. The dipole moment contribution (from surface potential measurements) and the surface topography and thickness (as revealed by Brewster angle microscopy) were measured simultaneously with the surface pressure at different molecular areas. Several surface features were observed depending on the asymmetry between the sphingosine and the N-linked acyl chains. At 21 °C, the C16:0 and C14:0 ceramides showed condensed isotherms and the film topography revealed solid film patches (17.3-15.7 ? thick) that coalesced into a homogeneous surface by further compression. On the other hand, in the more asymmetric C12:0 and C10:0 ceramides, liquid expanded states and liquid expanded-condensed transitions occurred. In the phase coexistence region, the condensed state of these compounds formed flowerlike domains (11.1-13.3 ? thick). C12:0 ceramide domains were larger and more densely branched than those of C10:0 ceramide. Both the film thickness and the surface dipole moment of the condensed state increased with ceramide N-acyl chain length. Bending of the sphingosine chain over the N-linked acyl chain in the more asymmetric ceramides can account for the variation of the surface electrostatics, topography, and thickness of the films with the acyl chain mismatch.  相似文献   

16.
在常温常压下,由乙二胺(EDA)和乙二醇及其衍生物(EGs)组成的混合体系可捕集SO2并转化为一种SO2储集材料(SO2SM)。EDA+EGs体系呈现了强的捕集性能(0.364~0.662 gSO2·gabsorbent-1)。FTIR,XPS和XRD结果确证了SO2SM为一种烷基亚硫酸盐。以EG-SO2SM为原料制备具有多种形貌的BaSO3或BaSO4,在此过程中,EG-SO2SM不仅提供了原材料,而且可以释放EDA和EG用作表面活性剂,调控晶体的结晶化过程。  相似文献   

17.
Carbon-carbon bond deformation curves for fluorinated ethylene molecules and the corresponding carbocations were calculated by the ab initio self-consistent field method in the 5-31G basis set. The maximum force required for bond cleavage was taken as a criterion for bond strength. It has been found that for ethylene, replacement of hydrogen by fluorine insignificantly strengthens the C=C bonds in symmetric molecules. However, in molecules with an asymmetric arrangement of fluorine atoms, the bond is slightly weakened due to different charges on the carbon atoms. The configuration of the corresponding carbocations also depends on the bond polarity: an assymmetric distribution of electron density in the C=C bond region leads to the formation of σ-complexes, while a symmetric distribution of electron density (pure covalent bonding) gives π-complexes. Since the carbon-carbon bond in the σ-complexes is essentially weaker, one should expect significant weakening of the bond in high-acidity media if the bond exhibits any kind of asymmetry (chain branching, defects, etc.). For the considered molecules, an antibatic correlation has been established between the strength criterion Fmax (unlike the dissociation energy) and the bond length. Institute of Physical Chemistry, Russian Academy of Sciences, Moscow. Translated fromZhurnal Strukturnoi Khimii, Vol. 36, No. 1, pp. 34–41, January–February, 1995. Translated by I. Izvekova  相似文献   

18.
We present a temperature-induced sedimentation/dispersion transition of ionic vesicles in the system of alkyldimethylamine oxide hemihydrochloride (CnDMAO.1/2HCl) with a hydrocarbon chain length of 12-16 (n = 12, 14, and 16) and sodium 2-naphthalenesulfonate (NaNphS). The temperature-sensitive sedimentation/dispersion of ionic vesicles took place around a temperature of 50 degrees C, which was weakly dependent on the alkyl chain length. The combined effect of the thermally induced dissociation of the counterions from the vesicle and a hydrogen bonding between the nonionic and the cationic head groups is likely to be responsible for this unique behavior.  相似文献   

19.
Molecular interactions between an anticancer drug, paclitaxel, and phosphatidylcholine (PC) of various chain lengths were investigated in the present work by the Langmuir film balance technique and differential scanning calorimetry (DSC). Both the lipid monolayer at the air-water interface and lipid bilayer vesicles (liposomes) were employed as model biological cell membranes. Measurement and analysis of the surface pressure versus molecular area curves of the mixed monolayers of phospholipids and paclitaxel under various molar ratio showed that phospholipids and paclitaxel formed a nonideal miscible system at the interface. Paclitaxel exerted an area-condensing effect on the lipid monolayer at small molecular surface areas and an area-expanding effect at large molecular areas, which could be explained by the intermolecular forces and geometric accommodation between the two components. Paclitaxel and phospholipids could form thermodynamically stable monolayer systems: the stability increased with the chain length in the order DMPC (C14:0)>DPPC (C16:0)>DSPC (C18:0). Investigation of paclitaxel penetration into the pure lipid monolayer showed that DMPC had a higher ability to incorporate paclitaxel and the critical surface pressure for paclitaxel penetration also increased with the chain length in the order DMPC>DPPC>DSPC. A similar trend was testified by DSC studies on vesicles of the mixed paclitaxel/phospholipids bilayer. Paclitaxel showed the greatest interaction with DMPC while little interaction could be measured in the paclitaxel/DSPC liposomes. Paclitaxel caused broadening of the main phase transition without significant change at the peak melting temperature of the phospholipid bilayers, which demonstrated that paclitaxel was localized in the outer hydrophobic cooperative zone of the bilayer. The interaction between paclitaxel and phospholipid was nonspecific and the dominant factor in this interaction was the van der Waals force or hydrophobic force. As the result of the lower net van der Waals interaction between hydrocarbon chains for the shorter acyl chains, paclitaxel interacted more readily with phospholipids of shorter chain length, which also increased the bilayer intermolecular spacing.  相似文献   

20.
The influence of the order of polymer melt on the subsequent crystallization and melting has been carefully studied. The experimental data show that the order of isotactic polypropylene (iPP) melt decreases with increases in the fusion temperature. For an iPP sample isothermally crystallized at 130 °C for half an hour, the degree of order of melt is higher when the fusion temperature is lower than about 170.5 °C, hence the lamellae formed in a rapid cooling process are perfect. If the fusion temperature is not higher than 167 °C, some thicker lamellae can exist in the melt. The melting of these unmelted lamellae and those lamellae recrystallized in the cooling process result in double endotherms. On the other hand, when the fusion temperature is higher than 170.5 °C, the order of the iPP melt decreases greatly; thus, the lamellae formed in the following cooling process are imperfect. At a lower heating rate, the recrystallization or reorganization of these imperfect lamellae also leads to double melting endotherms. Received: June 16, 2000 Accepted: October 16, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号