首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
自首次于聚乙炔发现导电现象以来,具有共轭结构的有机半导体材料赖其种类丰富多样、 制备工艺简捷低耗、以及优异的机械柔性等特点,在“后硅时代”中有望以先进光电子设备展现 其广阔前景,因而多年来备受学界和产业界的瞩目。如何进一步阐明有机半导体中结构和性能之 间的关系,探索电荷载流子微观动力学行为,构筑高性能、新功能的有机光电子器件,是当下有 机电子学领域的前沿核心问题,也是保证其持续发展的基石。近年来,二维有机半导体晶体材料 在秉持高度有序的分子排列与极低的杂质缺陷浓度等优点的同时,更是以“薄膜即是界面、界面 即是薄膜”为一帜,克服传统体材料在研究与应用中的瓶颈,为揭示材料构性关系及其中基本物 理过程提供了良好的平台,也是实现多样化的新型有机光电子器件的理想材料,有望为微纳电子 领域带来新一轮变革。本文从二维有机半导体晶体的制备工艺、电荷载流子微观动力学行为,再 到新型器件的光电功能应用等方面,综述了最新研究进展,做出总结和展望,并提出目前面临的 挑战及未来研究方向,旨在为进一步深入理论研究,结合有机材料与先进技术,推动有机电子学 的发展提供有益帮助。  相似文献   

2.
For the development of molecular electronics, it is desirable to investigate characteristics of organic molecules with electronic device functionalities. In near future, such molecular devices could be integrated with silicon to prepare hybrid nanoelectronic devices. In this paper, we review work done in our laboratory on study of characteristics of some functional molecules. For these studies molecular mono and multilayers have been deposited on silicon surface by self-assembly and electrochemical deposition techniques. Both commercially available and specially designed and synthesized molecules have been utilized for these investigations. We demonstrate dielectric layers, memory, switching, rectifier and negative differential resistance devices based on molecular mono and multilayers.  相似文献   

3.
The fabrication of organic optoelectronic devices requires patterning techniques that are compatible with organic semiconductor materials. Photolithography represents, by far, the dominant patterning approach for inorganic electronics and optoelectronics. High speed, parallel patterning capability, high resolution, and the availability of standard equipment make this technology also very attractive for applications in the field of organic semiconductor technology. In the present paper we present a successful implementation of photolithography to fabricate organic diodes. This process provides the basis for a future high‐resolution monolithic integration of organic optoelectronic and photonic devices into one photonic circuit. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
可延展柔性无机微纳电子器件原理与研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
冯雪  陆炳卫  吴坚  林媛  宋吉舟  宋国锋  黄永刚 《物理学报》2014,63(1):14201-014201
为适应下一代电子产品便携性、形状可变性、人体适用性等方面的进一步需求,近年来基于无机电子材料的可延展柔性电子技术成为全球电子产业界与学术界关注的新焦点.与有机柔性电子学器件不同,可延展柔性无机电子器件指的是建立在柔性基底上的无机电子组件.这种具有柔性的集成电路利用力学设计提供大变形,在保持无机脆性电子器件高性能和高可靠性的同时,具备形状可弯曲、可伸缩等柔性性能.本文综述了近年来无机柔性电子器件的进展,包括力学设计原理、基于界面黏附的转印集成方法以及柔性大变形下的失效机理等,并展望了未来的应用和发展.  相似文献   

5.
In recent years,low-dimensional materials have received extensive attention in the field of electronics and optoelectronics.Among them,photoelectric devices based on photoconductive effect in low-dimensional materials have a broad development space.In contrast to positive photoconductivity,negative photoconductivity(NPC)refers to a phenomenon that the conductivity decreases under illumination.It has novel application prospects in the field of optoelectronics,memory,and gas detection,etc.In this paper,we review reports about the NPC effect in low-dimensional materials and systematically summarize the mechanisms to form the NPC effect in existing low-dimensional materials.  相似文献   

6.
High-performance photodetectors are expected to open up revolutionary opportunities in many application fields, such as environment monitoring, military, optical communication and biomedical science. Combining two-dimensional materials(which have tunable optical absorption and high carrier mobility) with organic materials(which are abundant with low cost, high flexibility and large-area scalability) to form thin-film heterojunctions, high-responsivity photodetectors could be predicted with fast response speed in a wide spectra region.In this review, we give a comprehensive summary of photodetectors based on two-dimensional materials and organic thin-film heterojunctions, which includes hybrid assisted enhanced devices, single-layer enhanced devices, vertical heterojunction devices and tunable vertical heterojunction devices. We also give a systematic classification and perspectives on the future development of these types of photodetectors.  相似文献   

7.
Surfaces of organic materials are receiving an increased attention since their physical and chemical properties can be tailored very specifically by the choice of an appropriate organic molecule. The fabrication of well-defined organic surfaces with a high degree of structural order, however, is not straightforward. In many cases the preferred route is to deposit organic molecules on a solid, inorganic substrate. The growth of soft matter, molecules, on hard matter, metals, semiconductors or insulators, however, requires a detailed understanding of the substrate-adlayer interaction on a molecular level. Here we will discuss typical problems encountered in the epitaxy of organic molecules on inorganic substrates. Some basic concepts are outlined and illustrated, with particular emphasis on the epitaxial growth of organic semiconductors relevant for making molecular electronics devices and on the formation of selfassembled organothiolate monolayers on metal surfaces.  相似文献   

8.
半导体纳米材料和物理   总被引:5,自引:0,他引:5  
夏建白 《物理》2003,32(10):693-699
半导体纳米材料是纳米材料的一个重要组成部分,纳米结构的电子和光子器件将成为下一代微电子和光电子器件的核心。文章介绍了半导体纳米材料研究的新进展,包括四个方面:半导体自组织生长量子点,纳米晶体,微腔光子晶体和纳米结构中的自旋电子学。本世纪开始的半导体纳米材料的研究是上世纪半导体超晶格量子阱研究的延续,同时又开辟了一些新的领域,如:单电子的电子学、单光子的光子学,微腔和光子晶体,稀磁半导体和自旋电子的相干输运等,这些研究将为研制在新原理基础上的新器件和实现量子计算、量子通信打下基础。  相似文献   

9.
With the size of electronic devices approaching the nanometer scale, transition to self-assembly in molecular electronics systems appears to be technologically the next step to pursue. Quantum conductors with an especially high potential for applications are organic polymers and carbon nanotubes. The latter are being considered for use as both nonlinear electronic devices and as connectors between molecular electronics devices and the “outside world”. Depending on their internal structure and the nature of the electric contact to leads, these systems may exhibit fractional conductance quantization.  相似文献   

10.
Semiconductor materials form the basis of modern electronics, communication, data storage and computing technologies. One of today’s challenges for the development of future technologies is the realization of devices that control not only the electron charge, as in present electronics, but also its spin, setting the basis for future spintronics. Spintronics represents the concept of the synergetic and multifunctional use of charge and spin dynamics of electrons, aiming to go beyond the traditional dichotomy of semiconductor electronics and magnetic storage technology. The most direct method to induce spin-polarized electrons into a semiconductor is by introducing appropriate transition-metal or rare-earth dopants producing a dilute magnetic semiconductor (DMS). At the same time the seamless integration of future spintronic devices into nanodevices would require the fabrication of one-dimensional DMS nanostructures in well-defined architectures. In this review we focus on recent advances in the synthesis of DMS nanowires as well discussing the structural, optical and magnetic properties of these materials. PACS 75.75.+a; 81.07.Vb; 68.65.La  相似文献   

11.
自旋电子学和计算机硬件产业   总被引:1,自引:0,他引:1  
赖武彦 《物理》2002,31(7):437-443
1988年发现巨磁电阻(GMR)效应,是基于自旋的新电子学的开始。文章介绍观察效应的物理基础,以及这些效应和材料在信息存储上的应用。GMR硬盘(HDD)已经形成了数十亿美元的工业;其后发现的室温隧道磁电阻(TMR)效应已用于制造新关磁随机存储器(MRAM),它正在开创另一个数十亿美元的工业。自旋电子学研究的物理对象是自旋向上和自旋向下的载流子,而传统半导体电子学的对象是电荷为正和电荷为负的载流子,即空穴和电子。电子自旋特性进入半导体电子学,为新的器件创造了机会。为了成功地将电子自旋结合到半导体微电子技术中去,需要解决磁性原子自旋极化状态的控制,以及自旋极化载流子电流的有效注入、传输、控制、操纵和检测。评述了基于电子自旋的新器件原理、新材料的探索以及自旋相干态的光学操纵。  相似文献   

12.
Controlling and manipulating the fluorescence of single fluorophores is of great interest in recent years for its potential uses in improving the performance of molecular photonics and molecular electronics, such as in organic light-emitting devices, single photon sources, organic field-effect transistors, and probes or sensors based on single molecules. This review shows how the fluorescence emission of single organic molecules can be modified using local electromagnetic fields of metallic nanostructures and electric-field-induced electron transfer. Electric-field-induced fluorescence modulation, hysteresis, and the achievement of fluorescence switch are discussed in detail.  相似文献   

13.
量子声学及其应用   总被引:1,自引:0,他引:1  
量子声学是声学的一个前沿和刚刚活跃起来的分支,是继电子学、光子学之后发展迅速的一门新学科,本文就量子声学的诞生,定义和所涉及的内容进行了讨论,较为系统地介绍了与量子声学有关的理论、材料、器件和应用进展。  相似文献   

14.
As rapid development in wearable/implantable electronic devices benefit human life in daily health monitoring and disease treatment medically, all kinds of flexible and/or stretchable electronic devices are booming, together with which is the demanding of energy supply with similar mechanical property. Due to its ability in converting mechanical energy lying in human body into electric energy, energy harvesters based on piezoelectric materials are promising for applications in wearable/implantable device's energy supply in a renewable, clean and life-long way. Here the mechanics of traditional piezoelectrics in energy harvesting is reviewed, including why piezoelectricity is the choice for minor energy harvesting to power the implantable/wearable electronics and how. Different kinds of up to date flexible piezoelectric devices for energy harvesting are introduced, such as nanogenerators based on Zn O and thin and conformal energy harvester based on PZT. A detailed theoretical model of the flexible thin film energy harvester based on PZT nanoribbons is summarized, together with the in vivo demonstration of energy harvesting by integrating it with swine heart. Then the initial researches on stretchable energy harvesters based on piezoelectric material in wavy or serpentine configuration are introduced as well.  相似文献   

15.
The thermoelectric(TE)materials and corresponding TE devices can achieve direct heat-to-electricity conversion,thus have wide applications in heat energy harvesting(power generator),wearable electronics and local cooling.In recent years,aerogel-based TE materials have received considerable attention and have made remarkable progress because of their unique structural,electrical and thermal properties.In this review,the recent progress in both organic,inorganic,and composite/hybrid TE aerogels is systematically summarized,including the main constituents,preparation method,TE performance,as well as factors affecting the TE performance and the corresponding mechanism.Moreover,two typical aerogel-based TE devices/generators are compared and analyzed in terms of assembly modes and output performance.Finally,the present challenges and some tentative suggestions for future research prospects are provided in conclusion.  相似文献   

16.
Synthesis of continuous composition-spread (CCS) thin films is widely recognized in combinatorial material science as a powerful technique for rapidly investigating the properties of new functional materials. However, there are very few reports of CCS organic thin films due to the fact that the thermal evaporation method with Knudsen cells, which is commonly used to fabricate organic thin films in vacuum, does not offer the necessary level of deposition rate control as, for example, does pulsed laser deposition (PLD). We have successfully fabricated organic CCS thin films of pentacene and 6,13-pentacenequinone by continuous-wave laser molecular beam epitaxy (CWL-MBE), which we developed as a new fabrication method for organic thin films. The composition-spread films were characterized systematically by ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, atomic force microscopy, and two-probe conductivity measurements. The present work brings the advantages of high-throughput parallel synthesis and systematic characterization to the field of organic electronics, allowing for quick exploration and rapid optimization of organic functional materials and devices.  相似文献   

17.
The magnetoelectric (ME) materials and related devices have been attracting increasing research attention over the last few years. They exhibit strong ME coupling effect at room temperature, and electric field control of magnetization or magnetic field control of ferroelectric polarization can be achieved. The ME coupling effect brings novel functionalities to develop ultra-fast, low-power, and miniaturized electronics. Recent progress shows the performance of ME materials is further improved and the materials are used to develop many new types of electronics such as high-speed memory, radio frequency resonator, compact ME antenna, and weak magnetic field sensor. In this review, we present the overview in those fields with emphasis on both the opportunities and challenges for the application of ME materials and devices in the cutting-edge technologies.  相似文献   

18.
Technologies employing nanomaterials, such as electronics, optoelectronics, nanobiotechnologies, quantum optics, and nanophotonics, are perceived as the key drivers of investigations on novel and functional materials and their nanostructures for various applications. It is well understood that the study of such materials and structures has been of great importance for the optimization and development of electrical and optical devices. From such devices, one does not only expect higher efficiencies, but also access to the development of completely new concepts, which are strongly demanded by modern information-processing, quantum, or medical technologies, and sensing applications. In this context, a wide range of aspects such as the physics of novel materials, as well as materials engineering, characterization, and applications are summarized here. Novel materials, which can be used, for instance, for energy harvesting or light generation, as well as for future logic devices; material engineering, which can lead to improved device functionality and performance in optoelectronics; material physics, the study of which allows insight to be gained into optical and electrical properties of nanostructured systems and quantum materials; and technologies/devices, addressing progress on the application side of sophisticated material systems and quantum structures, are highlighted using representative examples.  相似文献   

19.
柴玉华  郭玉秀  卞伟  李雯  杨涛  仪明东  范曲立  解令海  黄维 《物理学报》2014,63(2):27302-027302
柔性有机非易失性场效应晶体管存储器具有柔性、质轻、成本低、可低温及大面积加工等优点,在射频识别标签、柔性存储、柔性集成电路和大面积柔性显示等领域展现出巨大的应用前景.本文在介绍柔性有机非易失性场效应晶体管存储器的衬底材料、器件结构和性能参数的基础上,总结了柔性有机非易失性场效应晶体管存储器的分类,并讨论了机械应力和不同温度对柔性有机非易失性场效应晶体管存储器性能参数的影响,最后展望了柔性有机非易失性场效应晶体管存储器的应用前景以及所面临的挑战.  相似文献   

20.
Although electronics technologies have made great advances in device speed, optical devices can function in the time domain inaccessible to electronics. In the time domain less than 1 ps, optical devices have no competition. Photonic or optical devices are designed to switch and process light signals without converting them to electronic form. The major advantages that these devices offer are speed and preservation of bandwidth. The switching is accomplished through changes in refractive index of the material that are proportional to the light intensity. The third-order optical susceptibility, χ(3), known as the optical Kerr susceptibility which is related to the non-linear part of the total refractive index, is the nonlinearity which provides this particular feature. Future opportunities in photonic switching and information processing will depend critically on the development of improved photonic materials with enhanced Kerr susceptibilities, as these materials are still in a relatively early stage of development. Different glass systems are now under investigation to increase their nonlinearity by introducing a variety of modifiers into the glass-network. Ion implantation is an attractive method for inducing colloid formation at a high local concentration unattainable by the melt-glass fabrication process and for confining the non-linearities to specific patterned regions in a variety of host matrices. Recent works on metal-ion implanted colloid generation in bulk fused silica glasses have shown that these nanocluster-glass composites under favourable circumstances have significant enhancement of χ(3) with picosecond to femtosecond temporal responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号