首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this contribution we advance and explore the thermally induced hopping (TIH) mechanism for long-range charge transport (CT) in DNA and in large-scale chemical systems. TIH occurs in donor-bridge-acceptor systems, which are characterized by off-resonance donor-bridge interactions (energy gap DeltaE > 0), involving thermally activated donor-bridge charge injection followed by intrabridge charge hopping. We observe a "transition" from superexchange to TIH with increasing the bridge length (i.e., the number N of the bridge constituents), which is manifested by crossing from the exponential N-dependent donor-acceptor CT rate at low N (< N(X)) to a weakly (algebraic) N-dependent CT rate at high N (>N(X)). The "critical" bridge size N(X) is determined by the energy gap, the nearest-neighbor electronic couplings, and the temperature. Experimental evidence for the TIH mechanism was inferred from our analysis of the chemical yields for the distal/proximal guanine (G) triplets in the (GGG)(+)TTXTT(GGG) duplex (X = G, azadine (zA), and adenine (A)) studied by Nakatani, Dohno and Saito [J. Am. Chem. Soc. 2000, 122, 5893]. The TIH sequential model, which involves hole hopping between (GGG) and X, is analyzed in terms of a sequential process in conjunction with parallel reactions of (GGG)(+) with water, and provides a scale of (free) energy gaps (relative to (GGG)(+)) of Delta = 0.21-0.24 eV for X = A, Delta = 0.10-0.14 eV for X = zA, and Delta = 0.05-0.10 eV for X = G. We further investigated the chemical yields for long-range TIH in (G)l(+)Xn(G)l (l = 1-3) duplexes, establishing the energetic constraints (i.e., the donor - bridge base (X) energy gap Delta), the bridge structural constraints (i.e., the intrabridge X-X hopping rates k(m)), and the kinetic constraints (i.e., the rate k(d) for the reaction of with water). Effective TIH is expected to prevail for Delta less than or approximately equal to 0.20 eV with a "fast" water reaction (k(d)/k(m) approximately 10(-3)) and for Delta < 0.30 eV with a "slow" water reaction (k(d)/k(m) approximately 10(-5)). We conclude that (T)n bridges (for which Delta approximately equals 0.6 eV) cannot act in TIH of holes. From an analysis based on the energetics of the electronic coupling matrix elements in G(+)(T-A)n(GGG) duplexes we conclude that the superexchange mechanism is expected to dominate for n = 1-4. For long (A)n bridges (n > or approximately equal to 4) the TIH prevails, provided that the water side reaction is slow, raising the issue of chemical control of TIH through long (A)n bridges in DNA attained by changing the solution composition.  相似文献   

2.
Sulfoxidation of thioanisoles by a non-heme iron(IV)-oxo complex, [(N4Py)Fe(IV)(O)](2+) (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine), was remarkably enhanced by perchloric acid (70% HClO(4)). The observed second-order rate constant (k(obs)) of sulfoxidation of thioaniosoles by [(N4Py)Fe(IV)(O)](2+) increases linearly with increasing concentration of HClO(4) (70%) in acetonitrile (MeCN)at 298 K. In contrast to sulfoxidation of thioanisoles by [(N4Py)Fe(IV)(O)](2+), the observed second-order rate constant (k(et)) of electron transfer from one-electron reductants such as [Fe(II)(Me(2)bpy)(3)](2+) (Me(2)bpy = 4,4-dimehtyl-2,2'-bipyridine) to [(N4Py)Fe(IV)(O)](2+) increases with increasing concentration of HClO(4), exhibiting second-order dependence on HClO(4) concentration. This indicates that the proton-coupled electron transfer (PCET) involves two protons associated with electron transfer from [Fe(II)(Me(2)bpy)(3)](2+) to [(N4Py)Fe(IV)(O)](2+) to yield [Fe(III)(Me(2)bpy)(3)](3+) and [(N4Py)Fe(III)(OH(2))](3+). The one-electron reduction potential (E(red)) of [(N4Py)Fe(IV)(O)](2+) in the presence of 10 mM HClO(4) (70%) in MeCN is determined to be 1.43 V vs SCE. A plot of E(red) vs log[HClO(4)] also indicates involvement of two protons in the PCET reduction of [(N4Py)Fe(IV)(O)](2+). The PCET driving force dependence of log k(et) is fitted in light of the Marcus theory of outer-sphere electron transfer to afford the reorganization of PCET (λ = 2.74 eV). The comparison of the k(obs) values of acid-promoted sulfoxidation of thioanisoles by [(N4Py)Fe(IV)(O)](2+) with the k(et) values of PCET from one-electron reductants to [(N4Py)Fe(IV)(O)](2+) at the same PCET driving force reveals that the acid-promoted sulfoxidation proceeds by one-step oxygen atom transfer from [(N4Py)Fe(IV)(O)](2+) to thioanisoles rather than outer-sphere PCET.  相似文献   

3.
Transport of positive charge or holes in DNA occurs via a thermally activated multi-step hopping mechanism. The fastest hopping rates reported to date are those for repeating poly(purine) sequences in which hopping occurs via a random walk mechanism with rate constants of k(hop) = 4.3 × 10(9) s(-1) for poly(dG) and 1.2 × 10(9) s(-1) for poly(dA). We report here the dynamics of charge separation in DNA conjugates possessing repeating 7-deazaadenine (dzA) sequences. These data provide an estimated value of k(hop) = 4.2 × 10(10) s(-1) for poly(dzA), an order of magnitude faster than for poly(dG).  相似文献   

4.
The redox systems [Ru(L)(bpy)(2)](k), [Ru(L)(2)(bpy)](m), and [Ru(L)(3)](n) containing the potentially redox-active ligand 9-oxidophenalenone = L(-) were investigated by spectroelectrochemistry (UV-vis-near-IR and electron paramagnetic resonance) in conjunction with density functional theory (DFT) calculations. Compounds [Ru(L(-))(bpy)(2)]ClO(4) ([1]ClO(4)) and [Ru(L(-))(2)(bpy)]ClO(4) ([2]ClO(4)) were structurally characterized. In addition to establishing electron-transfer processes involving the Ru(II)/Ru(III)/Ru(IV) and bpy(0)/bpy(?-) couples, evidence for the noninnocent behavior of L(-) was obtained from [Ru(IV)(L(?))(L(-))(bpy)](3+), which exhibits strong near-IR absorption due to ligand-to-ligand charge transfer. In contrast, the lability of the electrogenerated anion [Ru(L)(2)(bpy)](-) is attributed to a resonance situation [Ru(II)(L(?2-))(L(-))(bpy)](-)/[Ru(II)(L(-))(2) (bpy(?-))](-), as suggested by DFT calculations.  相似文献   

5.
Mixed-metal supramolecular complexes that couple ruthenium or osmium based light absorbers to a central rhodium(III) core have been designed which photocleave DNA upon irradiation with visible light. The complexes [[(bpy)(2)Ru(dpp)](2)RhCl(2)](PF(6))(5), [[(bpy)(2)Os(dpp)](2)RhCl(2)](PF(6))(5), and [[(tpy)RuCl(dpp)](2)RhCl(2)](PF(6))(3), where bpy = 2,2'-bipyridine, tpy = 2,2':6',2' '-terpyridine, and dpp = 2,3-bis(2-pyridyl)pyrazine, all exhibit intense metal to ligand charge transfer (MLCT) based transitions in the visible but possess lower lying metal to metal charge transfer (MMCT) excited states. These supramolecular complexes with low lying MMCT states photocleave DNA when excited into their intense MLCT transitions. Structurally similar complexes without this low lying MMCT state do not exhibit DNA photocleavage, establishing the role of this MMCT state in the DNA photocleavage event. Design considerations necessary to produce functional DNA photocleavage agents are presented herein.  相似文献   

6.
Swavey S  Brewer KJ 《Inorganic chemistry》2002,41(24):6196-6198
The mixed-metal supramolecular complex, [[(bpy)(2)Ru(dpp)](2)RhCl(2)](PF(6))(5) (bpy = 2,2'-bipyridine and dpp = 2,3-bis(2-pyridyl)pyrazine) coupling two ruthenium light absorbers (LAs) to a central rhodium, has been shown to photocleave DNA. This system possesses a lowest lying metal to metal charge transfer (MMCT) excited state in contrast to the metal to ligand charge transfer states (MLCT) of the bpm and Ir analogues. The systems with an MLCT excited state do not photocleavage DNA. [[(bpy)(2)Ru(dpp)](2)RhCl(2)](PF(6))(5) is the first supramolecular system shown to cleave DNA. It functions through an excited state previously unexplored for this reactivity, a Ru --> Rh MMCT excited state. This system functions when irradiated with low energy visible light with or without molecular oxygen.  相似文献   

7.
Laser flash photolysis and stopped-flow methods have been employed to determine the kinetics of the reactions of benzhydrylium ions with both termini of the thiocyanate ion. In contrast to previous investigations which reported sulfur/nitrogen ratios of k(S)/k(N) = 2-10 for the reactions of carbocations with SCN(-), values of k(S)/k(N) = 10(3)-10(4) are now derived from absolute rate constants. This discrepancy is explained by the fact that the data determined in this investigation are the first which refer to activation-controlled attack of carbocations at both termini of the thiocyanate ion, while previous reactivity ratios included diffusion-controlled reactions. It is concluded that the selectivities of the reactions of carbocations with the thiocyanate ion cannot be explained by the hard soft acid base principle.  相似文献   

8.
The longitudinal linear polarizability alpha(N) of a stereoregular oligomer of size N is proportional to N in the large-N limit, provided the system is nonconducting in that limit. It has long been known that the convergence of alpha(N)/N to the asymptotic alpha(infinity) value is slow. We show that the leading term in the difference between alpha(N)/N and alpha(infinity) is of the order of 1/N. The difference [alpha(N)-alpha(N-1)], as well as alpha(center)(N) (when computationally accessible), also converge to alpha(infinity), but faster, the leading term being of the order of 1/N(2). We also present evidence that in these cases the power law convergence behavior is due to quasi-one-dimensional electrostatics, with one exception. Specifically, in molecular systems the difference between alpha(N)/N and alpha(infinity) has not just one but two sources of the O(1/N) term, with one being due to the aforementioned Coulomb interactions, and the second due to the short ranged exponentially decaying perturbations on chain ends. The major role of electrostatics in the convergence of the remainders is demonstrated by means of a Clausius-Mossotti-type classical model. The conclusions derived from the model are also shown to be applicable in molecular systems, by means of test-case ab initio calculations on linear stacks of H(2) molecules, and on polyacetylene chains. The implications of the modern theory of polarization for extended systems are also discussed.  相似文献   

9.
Du B  Meyers EA  Shore SG 《Inorganic chemistry》2001,40(17):4353-4360
Sheet- and column-like cyanide bridged lanthanide-transition metal arrays were synthesized through metathesis reactions between anhydrous LnCl(3) (Ln = Eu, Yb) and A(2)[M(CN)(4)] (A = K(+), NH(4)(+); M = Ni, Pt) in a 1:2 molar ratio in DMF (DMF = N,N-dimethylformamide) solution. Single-crystal X-ray analysis revealed that complexes of formula [K(DMF)(7)Ln[M(CN)(4)](2)](infinity) (Ln = Eu, M = Ni, 1; Ln = Yb, M = Pt, 2) consist of infinite layers of neutral, puckered sheets that contain hexagonal rings of composition [(DMF)(10)Ln(2)[M(CN)(4)](3)](6) with interstitial (DMF)(4)K(2)[M(CN)(4)] units located between the layers. The sheet structure is generated through the repeating (DMF)(10)Ln(2)[M(CN)(4)](3) unit with trans cyanide ligands in [M(CN)(4)](2)(-) serving as bridges. The column-like complex [(NH(4))(DMF)(4)Yb[Pt(CN)(4)](2)](infinity), 3, is formed when NH(4)(+) replaces K(+). It consists of infinite, negatively charged, square, parallel columns bundled through N-H...NC hydrogen bonds between NH(4)(+) and terminal CN from the columns. Cis cyanide ligands in [Pt(CN)(4)](2)(-) units serve as bridges. Complex 3 is the first known example where Ln(III) centers are coordinated to four [M(CN)(4)](2)(-) units. Bicapped (square face) trigonal prismatic coordination geometries were observed for Ln(III) centers in 1 and 2. Square antiprismatic geometry for Yb(III) centers are observed in 3. Crystal data for 1: triclinic space group P1, a = 8.797(2) A, b = 15.621(3) A, c = 17.973(6) A, alpha = 105.48(2) degrees, beta = 98.60(2) degrees, gamma = 98.15(2) degrees, Z = 2. Crystal data for 2: triclinic space group P1, a = 8.825(1) A, b = 15.673(1) A, c = 17.946(1) A, alpha = 105.46(2) degrees, beta = 99.10(1) degrees, gamma = 98.59(1) degrees, Z = 2. Crystal data for 3: monoclinic space group P2(1)/c, a = 9.032(1) A, b = 29.062(1) A, c = 15.316(1) A, beta = 94.51(1) degrees, Z = 2.  相似文献   

10.
The heterometallic complex (NH(3))(2)YbFe(CO)(4) was prepared from the reduction of Fe(3)(CO)(12) by Yb in liquid ammonia. Ammonia was displaced from (NH(3))(2)YbFe(CO)(4) by acetonitrile in acetonitrile solution, and the crystalline compounds {[(CH(3)CN)(3)YbFe(CO)(4))](2).CH(3)CN}(infinity) and [(CH(3)CN)(3)YbFe(CO)(4)](infinity) were obtained. An earlier X-ray study of {[(CH(3)CN)(3)YbFe(CO)(4)](2).CH(3)CN}(infinity) showed that it is a ladder polymer with direct Yb-Fe bonds. In the present study, an X-ray crystal structure analysis also showed that [(CH(3)CN)(3)YbFe(CO)(4)](infinity) is a sheetlike array with direct Yb-Fe bonds. Crystal data for {[(CH(3)CN)(3)YbFe(CO)(4)](2).CH(3)CN}(infinity): monoclinic space group P2(1)/c, a = 21.515(8) ?, b = 7.838(2) ?, c = 19.866(6) ?, beta = 105.47(2) degrees, Z = 4. Crystal data for [(CH(3)CN)(3)YbFe(CO)(4)](infinity): monoclinic space group P2(1)/n, a = 8.364(3) ?, b = 9.605(5) ?, c = 17.240(6) ?, beta = 92.22(3) degrees, Z = 4. Electrical conductivity measurements in acetonitrile show that these acetonitrile complexes are partially dissociated into ionic species. IR and NMR spectra of the solutions reveal the presence of [HFe(CO)(4)](-). However, upon recrystallization, the acetonitrile complexes show no evidence for the presence of [HFe(CO)(4)](-) on the basis of their IR spectra. The solid state MAS (2)H NMR spectra of deuterated acetonitrile complexes give no evidence for [(2)HFe(CO)(4)](-). It appears that rupture of the Yb-Fe bond could occur in solution to generate the ion pair [L(n)Yb](2+)[Fe(CO)(4)](2-), but then the highly basic [Fe(CO)(4)](2-) anion could abstract a proton from a coordinated acetonitrile ligand to form [HFe(CO)(4)](-). However, upon crystallization, the proton could be transferred back to the ligand, which results in the neutral polymeric species.  相似文献   

11.
DNA duplexes containing an N,N,N',N'-tetramethyl-1,5-diaminonaphthalene analogue and 5-bromo-2'-deoxyuridine (BrdU) provide a readily accessible system for investigating excess electron transfer in DNA. Photoexcitation of the aromatic amine (lambda > 335 nm) induces reductive electron transfer as observed by strand cleavage adjacent to the BrdU residue. The weak exponential distance dependence (0.3 A-1) of electron transfer determined for this system of mixed dA-T and dG-dC base pairs suggests that thermally activated electron hopping is competitive with proton transfer within the dG.dC radical anion. The UV-dependent transfer of excess electrons and subsequent strand cleavage proceeds equivalently under anaerobic and aerobic conditions and is not sensitive to e-(aq) or hydroxyl radical trapping agents.  相似文献   

12.
[Methanol + ammonium acetate] solutions of anomeric 2,3-O-isopropylidene-1alpha- and 1beta-ribofuranosyl azides were investigated by electrospray ionization mass spectrometry (ESI-MS). The compounds included d6-labeled and/or unlabeled isopropylidene groups that enable the identification of peaks characteristic of the ammonium-attached monomeric (MNH4(+)), ammonium-bound homodimeric ([M]2NH4(+)) and heterodimeric ([MNH4M1](+)) complex ions in ESI mass spectra of solutions of a pair of compounds. The intensities of the product ion peaks obtained by the collisionally activated ammonium-bound dimeric ions are related to the secondary isotope effect k(alpha)/k(alphad6) = 0.88 and k(beta)/k(betad6) = 1.25 or to isotope plus anomeric effects k(alpha)/k(betad6) = 1.43 and k(beta)/k(alphad6) = 0.59 in the ammonium affinities of these compounds. The calculations of solely anomeric effects in the ammonium affinities of alpha and beta anomeric compounds obtained from the data presented previously give two series of values: k(alpha)/k(beta) = (k(alpha)/k(alphad6))(k(alphad6)/k(beta)) = 1.49 and k(alphad6)/k(betad6) = (k(alphad6)/k(beta))(k(beta)/k(betad6)) = 2.12 or k(alpha)/k(beta) = (k(alpha)/k(betad6))(k(betad6)/k(beta)) = 1.14 and k(alphad6)/k(betad6) = (k(alphad6)/k(alpha))(k(alpha)/k(betad6)) = 1.63. The disparities of these results indicate the different structures of hydrogen bonding in ammonium-bound dimeric complexes which decompose to monomeric ions with different rate constants. Comparison of experimental results obtained by the qualitative approach of the kinetic method and ammonium affinities of these compounds calculated by the semi-empirical molecular orbital method (AM1) show that the [MNH4M1](+) dimeric complex ions dissociate to the most stable MNH4(+) and M1NH4(+) monomeric ions. The obtained relative order of ammonium affinities of these compounds is: alphad6 > alpha > beta > betad6.  相似文献   

13.
The complexes [Pt(bipy){CC-(4-pyridyl)}(2)] (1) and [Pt(tBu(2)bipy){CC-(4-pyridyl)}(2)] (2) and [Pt(tBu(2)-bipy)(CC-phen)(2)] (3) all contain a Pt(bipy)(diacetylide) core with pendant 4-pyridyl (1 and 2) or phenanthroline (3) units which can be coordinated to {Ln(diketonate)(3)} fragments (Ln = a lanthanide) to make covalently-linked Pt(II)/Ln(III) polynuclear assemblies in which the Pt(II) chromophore, absorbing in the visible region, can be used to sensitise near-infrared luminescence from the Ln(III) centres. For 1 and 2 one-dimensional coordination polymers [1Ln(tta)(3)](infinity) and [2Ln(hfac)(3)](infinity) are formed, whereas 3 forms trinuclear adducts [3{Ln(hfac)(3)}(2)] (tta=anion of thenoyl-trifluoroacetone; hfac=anion of hexafluoroacetylacetone). Complexes 1-3 show typical Pt(II)-based (3)MLCT luminescence in solution at approximately 510 nm, but in the coordination polymers [1Ln(tta)(3)](infinity) and [2Ln(hfac)(3)](infinity) the presence of stacked pairs of Pt(II) units with short PtPt distances means that the chromophores have (3)MMLCT character and emit at lower energy ( approximately 630 nm). Photophysical studies in solution and in the solid state show that the (3)MMLCT luminescence in [1Ln(tta)(3)](infinity) and [2Ln(hfac)(3)](infinity) in the solid state, and the (3)MLCT emission of [3{Ln(hfac)(3)}(2)] in solution and the solid state, is quenched by Pt-->Ln energy transfer when the lanthanide has low-energy f-f excited states which can act as energy acceptors (Ln=Yb, Nd, Er, Pr). This results in sensitised near-infrared luminescence from the Ln(III) units. The extent of quenching of the Pt(II)-based emission, and the Pt-->Ln energy-transfer rates, can vary over a wide range according to how effective each Ln(III) ion is at acting as an energy acceptor, with Yb(III) usually providing the least quenching (slowest Pt-->Ln energy transfer) and either Nd(III) or Er(III) providing the most (fastest Pt-->Ln energy transfer) according to which one has the best overlap of its f-f absorption manifold with the Pt(II)-based luminescence.  相似文献   

14.
The oxidation of alkanes and arylalkanes by KMnO(4) in CH(3)CN is greatly accelerated by the presence of just a few equivalents of BF(3), the reaction occurring readily at room temperature. Carbonyl compounds are the predominant products in the oxidation of secondary C-H bonds. Spectrophotometric and kinetics studies show that BF(3) forms an adduct with KMnO(4) in CH(3)CN, [BF(3).MnO(4)](-), which is the active species responsible for the oxidation of C-H bonds. The rate constant for the oxidation of toluene by [BF(3).MnO(4)](-) is over 7 orders of magnitude faster than by MnO(4)(-) alone. The kinetic isotope effects for the oxidation of cyclohexane, toluene, and ethylbenzene at 25.0 degrees C are as follows: k(C6H12)/k(C6D12) = 5.3 +/- 0.6, k(C7H8)/k(C7D8) = 6.8 +/- 0.5, k(C8H10)/k(C8D10) = 7.1 +/- 0.5. The rate-limiting step for all of these reactions is most likely hydrogen-atom transfer from the substrate to an oxo group of the adduct. A good linear correlation between log(rate constant) and C-H bond energies of the hydrocarbons is found. The accelerating effect of BF(3) on the oxidation of methane by MnO(4)(-) has been studied computationally by the Density Functional Theory (DFT) method. A significant decrease in the reaction barrier results from BF(3) coordination to MnO(4)(-). The BF(3) coordination increases the ability of the Mn metal center to achieve a d(1) Mn(VI) electron configuration in the transition state. Calculations also indicate that the species [2BF(3).MnO(4)](-) is more reactive than [BF(3).MnO(4)](-).  相似文献   

15.
A new chlorocuprate(II), [(C(2)H(5))(4)N](2)Cu(5)Cl(12), was prepared by reaction of CuCl(2).2H(2)O and (C(2)H(5))(4)NCl in 1,1,2-trichloroethane-ethanol followed by water-ethanol evaporation. The crystal structure, solved by single-crystal X-ray diffraction at room temperature, was found to be triclinic, space group P&onemacr;, with cell parameters a = 8.9123(9) ?, b = 11.0690(8) ?, c = 11.2211(9) ?, alpha = 118.766(6) degrees beta = 109.041(8) degrees, gamma = 97.465(7) degrees, and Z = 1, and consists of a two-dimensional network of [(Cu(5)Cl(12))(2)(-)](infinity) parallel to the a, b plane, alternating with layers of the organic cations along c. The anionic sheets are built up by aggregation of infinite zigzag chains of alternating tetranuclear and mononuclear subsequences. This structure can be related to the anhydrous CuCl(2) structure by systematic removal of (Cu(2)Cl(6))(2+) fragments. The magnetic susceptibility of this compound can be described by a simple model, suggested by the structural data, that considers independent contributions of linear tetramers, with antiferromagnetically coupled pairs of copper atoms (J(1)/k = -64(2) K), and almost magnetically isolated Cu(II) centers, that obey a Curie-Weiss law with a &THETAV; = -2.7(8) K.  相似文献   

16.
Oxidation of a guanine nucleobase to its radical cation in DNA oligomers causes an increase in the acidity of the N1 imino proton that may lead to its spontaneous transfer to N3 of the paired cytosine. This proton transfer is suspected of playing an important role in long-distance radical cation hopping in DNA and the decisive product-determining role in the reaction of the radical cation with H2O or O2. We prepared and investigated DNA oligomers in which certain deoxycytidines are replaced by 5-fluoro-2'-deoxycytidines (F5dC). The pKa of F5C was determined to be 1.7 units below that of dC, which causes proton transfer from the guanine radical cation to be thermodynamically unfavorable. Photoinitiated one-electron oxidation of the DNA by UV irradiation of a covalently attached anthraquinone derivative introduces a radical cation that hops throughout the oligomer and is trapped selectively at GG steps. The introduction of F5dC does not affect the efficiency of charge hopping, but it significantly reduces the amount of reaction at the GG sites, as revealed by subsequent reaction with formamidopyrimidine glycosylase. These findings suggest that transfer of the guanine radical cation N1 proton to cytosine does not play a significant role in long-range charge transfer, but this process does influence the reactions with H2O and/or O2.  相似文献   

17.
Bu XH  Chen W  Hou WF  Du M  Zhang RH  Brisse F 《Inorganic chemistry》2002,41(13):3477-3482
The reactions of 1,4-bis(phenylthio)butane (L) with Ag(I) salts in varied conditions (varying the solvents, metal-to-ligand ratios, and counteranions) lead to the formation of four new two-dimensional (2D) coordination polymers with different network structures: [Ag(2)L(3)(ClO(4))(2)](infinity) 1, [Ag(2)L(3)(ClO(4))(2) x CH(3)OH](infinity) 2, [[AgL(2)](ClO(4))](infinity) 3, and [AgLNO(3)](infinity) 4. All the structures were established by single-crystal X-ray diffraction analysis. Crystal data for 1: triclinic, P-1, a = 11.0253(9) A, b = 11.3455(9) A, c = 11.5231(9) A, alpha = 93.931(2) degrees, beta = 92.689(2) degrees, gamma = 112.9810(10) degrees, Z = 2. 2: triclinic, P-1, a = 11.9147(13) A, b = 16.1534(17) A, c = 16.2259(17) A, alpha = 74.977(2) degrees, beta = 69.030(2) degrees, gamma = 69.986(2) degrees, Z = 2. 3: triclinic, P-1, a = 12.1617(9) A, b = 12.5054(10) A, c = 13.1547(10) A, alpha = 64.3370(10) degrees, beta =85.938 (2) degrees, gamma = 69.3010(10) degrees, Z = 2. 4: monoclinic, P2(1)/c, a = 5.4032(17) A, b = 16.974(6) A, c = 19.489(6) A, beta = 94.234(6) degrees, Z = 4. In all four complexes, each Ag(I) center has a tetracoordination geometry, and the 2D networks consist of fused large macrometallacyclic ring systems. The "hexagonal" 42-membered rings, Ag(6)L(6), observed in 1 and 2 are nearly identical, which could be considered as unique examples of self-sustaining noninterpenetrated frameworks formed with flexible ligands. The repeating rectangular 28-membered macrometallacycle, Ag(4)L(4), is the basis for the network of 3, in which the perchlorate anions occupy the voids to prevent the ring from collapsing. In 4, columns of the fused rectangular 22-membered rings, Ag(4)L(2)(NO(3))(2), are cross-linked through the L ligands to form a unique 2D network consisting of two types of 22-membered repeating units.  相似文献   

18.
Joseph J  Schuster GB 《Organic letters》2007,9(10):1843-1846
Thymine-Hg(II)-thymine base pairs have been incorporated in an oligonucleotide duplex to study their effect on DNA-mediated charge transport. The introduction of a formally charged Hg atom inside the DNA base core does not significantly alter the charge hopping and trapping properties, as discussed in this paper. Hg(II) replaces the protons normally found on thymines within the complex and acts like a "big proton" in terms of its role in DNA charge transport.  相似文献   

19.
The mechanism and dynamics of photoinduced charge separation and charge recombination have been investigated in synthetic DNA hairpins possessing donor and acceptor stilbenes separated by one to seven A:T base pairs. The application of femtosecond broadband pump-probe spectroscopy, nanosecond transient absorption spectroscopy, and picosecond fluorescence decay measurements permits detailed analysis of the formation and decay of the stilbene acceptor singlet state and of the charge-separated intermediates. When the donor and acceptor are separated by a single A:T base pair, charge separation occurs via a single-step superexchange mechanism. However, when the donor and acceptor are separated by two or more A:T base pairs, charge separation occurs via a multistep process consisting of hole injection, hole transport, and hole trapping. In such cases, hole arrival at the electron donor is slower than hole injection into the bridging A-tract. Rate constants for charge separation (hole arrival) and charge recombination are dependent upon the donor-acceptor distance; however, the rate constant for hole injection is independent of the donor-acceptor distance. The observation of crossover from a superexchange to a hopping mechanism provides a "missing link" in the analysis of DNA electron transfer and requires reevaluation of the existing literature for photoinduced electron transfer in DNA.  相似文献   

20.
A series of one-dimensional arrays of lanthanide-transition metal complexes has been prepared and characterized. These complexes, [(DMF)(10)Ln(2)[Ni(CN)(4)](3)](infinity), crystallize as linear single-strand arrays (structural type A) (Ln = Sm, 1a; Eu, 2a) or double-strand arrays (structural type B) (Ln = Sm, 1b; Eu, 2b) depending upon the conditions chosen, and they are interconvertible. The single-strand type A structure can be converted to the double-strand type B structure. When the 1b and 2b type B crystals are completely dissolved in DMF, their infrared spectra are identical to the infrared spectra of 1a and 2a type A crystals dissolved in DMF. These solutions produce type A crystals initially. It is believed that formation of the type A structure is kinetically favored while the type B structure is thermodynamically favored for lanthanide-nickel complexes 1 and 2. On the other hand the complex [(DMF)(10)Y(2)[Pd(CN)(4)](3)](infinity), 3, appears to crystallize only as the double-strand array (type B). The complexes [(DMF)(12)Ce(2)[Ni(CN)(4)](3)](infinity), 4, and [(DMF)(12)Ce(2)[Pd(CN)(4)](3)](infinity), 5, crystallize as a new type of single-strand array (structural type C). This structural type is a zigzag chain array. Crystal data for 1a: triclinic space group P1, a = 10.442(5) A, b = 10.923(2) A, c = 15.168(3) A, alpha = 74.02(2) degrees, beta = 83.81(3) degrees, gamma = 82.91(4) degrees, Z = 2. Crystal data for 1b: triclinic space group P1, a = 9.129(2) A, b = 11.286(6) A, c = 16.276(7) A, alpha = 81.40(4) degrees, beta = 77.41(3) degrees, gamma = 83.02(3) degrees, Z = 2. Crystal data for 2a: triclinic space group P1, a = 10.467(1) A, b = 10.923(1) A, c = 15.123(1) A, alpha = 74.24(1) degrees, beta = 83.61(1) degrees, gamma = 83.13(1) degrees, Z = 2. Crystal data for 2b: triclinic space group P1, a = 9.128(1) A, b = 11.271(1) A, c = 16.227(6) A, alpha = 81.36(2) degrees, beta = 77.43(2) degrees, gamma = 82.99(1) degrees, Z = 2. Crystal data for 3: triclinic space group P1, a = 9.251(3) A, b = 11.193(4) A, c = 16.388(4) A, alpha = 81.46(2) degrees, beta = 77.18(2) degrees, gamma = 83.24(3) degrees, Z = 2. Crystal data for 4: triclinic space group P1, a = 11.279(1) A, b = 12.504(1) A, c = 13.887(1) A, alpha = 98.68(1) degrees, beta = 108.85(1) degrees, gamma = 101.75(1) degrees, Z = 2. Crystal data for 5: triclinic space group P1, a = 11.388(3) A, b = 12.614(5) A, c = 13.965(4) A, alpha = 97.67(3) degrees, beta = 109.01(2) degrees, gamma = 101.93(2) degrees, Z = 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号