首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The interaction of solitons of a system of nonlinear equations at distances greatly exceeding their characteristic dimensions is studied by perturbation methods. The slow modulation of soliton parameters under the influence of a small perturbing field of distant solitons is considered. It is shown that the equation of the soliton trajectory in the first and second orders of the method has the form of the classical equation of motion of a particle in electromagnetic and gravitational (in the sense of the bimetric theory) fields.Electrotechnical Institute, Leningrad. Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 90, No. 3, pp. 380–387, March, 1992.  相似文献   

2.
In this note, we numerically investigate a stochastic nonlinear Schrödinger equation derived as a perturbation of the deterministic NLS equation. The classical NLS equation with focusing nonlinearity of power law type is perturbed by a random term; it is a strong perturbation since we consider a space-time white noise. It acts either as a forcing term (additive noise) or as a potential (multiplicative noise). For simulations made on a uniform grid, we see that all trajectories blow-up in finite time, no matter how the initial data are chosen. Such a grid cannot represent a noise with zero correlation lengths, so that in these experiments, the noise is, in fact, spatially smooth. On the contrary, we simulate a noise with arbitrarily small scales using local refinement and show that in the multiplicative case, blow-up is prevented by a space-time white noise. We also present results on noise induced soliton diffusion.  相似文献   

3.
The defocusing Hirota equation has dark and gray soliton solutions which are stable on a background of periodic waves of constant amplitude. In this paper, gray solitary wave evolution for a higher-order defocusing Hirota equation is examined. A direct analysis is used to identify families of higher-order gray Hirota solitary waves, which are embedded for certain parameter values. Soliton perturbation theory is used to determine the detailed behavior of an evolving higher-order gray Hirota solitary wave. An integral expression for the first-order correction to the wave is found and analytical expressions for the steady-state and transient components of the solitary wave tail are derived. A subtle and complex picture of the development of solitary wave tails emerges. It is found that solitary wave tails develop for two reasons, one is decay of the solitary wave caused by resonance, the second is corrections at first-order to the background wave. Strong agreement is found between the theoretical predictions of the perturbation theory and numerical solutions of the governing equations.  相似文献   

4.
We study soliton solutions to the nonlinear Schrödinger equation (NLS) with a saturated nonlinearity. NLS with such a nonlinearity is known to possess a minimal mass soliton. We consider a small perturbation of a minimal mass soliton and identify a system of ODEs extending the work of Comech and Pelinovsky (Commun. Pure Appl. Math. 56:1565–1607, 2003), which models the behavior of the perturbation for short times. We then provide numerical evidence that under this system of ODEs there are two possible dynamical outcomes, in accord with the conclusions of Pelinovsky et al. (Phys. Rev. E 53(2):1940–1953, 1996). Generically, initial data which supports a soliton structure appears to oscillate, with oscillations centered on a stable soliton. For initial data which is expected to disperse, the finite dimensional dynamics initially follow the unstable portion of the soliton curve.  相似文献   

5.
One- and two-dimensional solitons of a multicomponent nonlocal nonlinear Schrödinger (NLS) system are constructed. The model finds applications in nonlinear optics, where it may describe the interaction of optical beams of different frequencies. We asymptotically reduce the model, via multiscale analysis, to completely integrable ones in both Cartesian and cylindrical geometries; we thus derive a Kadomtsev-Petviashvili equation and its cylindrical counterpart, Johnson's equation. This way, we derive approximate soliton solutions of the nonlocal NLS system, which have the form of: (a) dark or antidark soliton stripes and (b) dark lumps in the Cartesian geometry, as well as (c) ring dark or antidark solitons in the cylindrical geometry. The type of the soliton, namely dark or antidark, is determined by the degree of nonlocality: dark (antidark) soliton states are formed for weaker (stronger) nonlocality. We perform numerical simulations and show that the derived soliton solutions do exist and propagate undistorted in the original nonlocal NLS system.  相似文献   

6.
Propagation of nonlinear waves in dusty plasmas with variable dust charge and two temperature ions is analyzed. The Kadomtsev–Petviashivili (KP) equation is derived by using the reductive perturbation theory. A Sagdeev potential for this system has been proposed. This potential is used to study the stability conditions and existence of solitonic solutions. Also, it is shown that a rarefactive soliton can be propagates in most of the cases. The soliton energy has been calculated and a linear dispersion relation has been obtained using the standard normal-modes analysis. The effects of variable dust charge on the amplitude, width and energy of the soliton and its effects on the angular frequency of linear wave are discussed too. It is shown that the amplitude of solitary waves of KP equation diverges at critical values of plasma parameters. Solitonic solutions of modified KP equation with finite amplitude in this situation are derived.  相似文献   

7.
The action of an external parametric perturbation with slowly changing frequency on a soliton of the nonlinear Schrödinger equation is studied. Equations for the time evolution of the parameters of the perturbed soliton are derived. Conditions for the soliton phase locking are found, which relate the rate of change of the perturbation frequency, its amplitude, the wave number, and the phase to the initial data of the soliton. The cases when the initial amplitude of the soliton is small and when the amplitude of the soliton is of the order of unity are considered.  相似文献   

8.
We derive an extended nonlinear dispersion for envelope soliton equations and also find generalized equations of the nonlinear Schr?dinger (NLS) type associated with this dispersion. We show that space dilatations imply hyperbolic rotation of the pair of dual equations, the NLS and resonant NLS (RNLS) equations. For the RNLS equation, in addition to the Madelung fluid representation, we find an alternative non-Madelung fluid system in the form of a Broer-Kaup system. Using the bilinear form for the RNLS equation, we construct the soliton resonances for the Broer-Kaup system and find the corresponding integrals of motion and existence conditions for the soliton resonance and also a geometric interpretation in terms of a pseudo-Riemannian surface of constant curvature. This approach can be extended to construct a resonance version and the corresponding Broer-Kaup-type representation for any envelope soliton equation. As an example, we derive a new modified Broer-Kaup system from the modified NLS equation.  相似文献   

9.
In the present study, we apply function transformation methods to the D-dimensional nonlinear Schr?dinger (NLS) equation with damping and diffusive terms. As special cases, this method applies to the sine-Gordon, sinh-Gordon, and other equations. Also, the results show that these equations depend on only one function that can be obtained analytically by solving an ordinary differential equation. Furthermore, certain exact solutions of these three equations are shown to lead to the exact soliton solutions of a D-dimensional NLS equation with damping and diffusive terms. Finally, our results imply that the planar solitons, N multiple solitons, propagational breathers, and quadric solitons are solutions to the sine-Gordon, sinh-Gordon, and D-dimensional NLS equations.  相似文献   

10.
The soliton resolution conjecture for the focusing nonlinear Schrödinger equation (NLS) is the vaguely worded claim that a global solution of the NLS, for generic initial data, will eventually resolve into a radiation component that disperses like a linear solution, plus a localized component that behaves like a soliton or multisoliton solution. Considered to be one of the fundamental open problems in the area of nonlinear dispersive equations, this conjecture has eluded a proof or even a precise formulation to date. This paper proves a “statistical version” of this conjecture at mass‐subcritical nonlinearity, in the following sense: The uniform probability distribution on the set of all functions with a given mass and energy, if such a thing existed, would be a natural invariant measure for the NLS flow and would reflect the long‐term behavior for “generic initial data” with that mass and energy. Unfortunately, such a probability measure does not exist. We circumvent this problem by constructing a sequence of discrete measures that, in principle, approximate this fictitious probability distribution as the grid size goes to 0. We then show that a continuum limit of this sequence of probability measures does exist in a certain sense, and in agreement with the soliton resolution conjecture, the limit measure concentrates on the unique ground state soliton. Combining this with results from ergodic theory, we present a tentative formulation and proof of the soliton resolution conjecture in the discrete setting. The above results, following in the footsteps of a program of studying the long‐term behavior of nonlinear dispersive equations through their natural invariant measures initiated by Lebowitz, Rose, and Speer and carried forward by Bourgain, McKean, Tzvetkov, Oh, and others, are proved using a combination of techniques from large deviations, PDEs, harmonic analysis, and bare‐hands probability theory. It is valid in any dimension. © 2014 Wiley Periodicals, Inc.  相似文献   

11.
Effect of Raman like perturbations on the propagation characteristics of an optical pulse in a fiber is simulated in different manner. The optical pulse is described by a modified NLS equation, which is coupled with a vibrational equation describing the Raman perturbation due to the molecular oscillation. Two different approaches are used to analyze the equation. In the first approach both the coupled equations are treated through projection operator technique to derive the ODE’s for describing the evolution of the pulse parameters. On the other hand in the later technique we could reduce the system to a new NLS equation which was then studied in a similar manner. The numerical results and the behaviour of the parameters predicted by both the methodologies reasonably tallies with each other. The detailed change of the amplitude, chirp, phase, and width of the pulse is analyzed. It is then shown how dispersion management partially restores the projected pulse. And lastly it is demonstrated that including a distance dependent amplification or an amplification map we can get back the required periodic structure required for a long haul transmission.  相似文献   

12.
This paper studies the adiabatic dynamics of topological solitons in presence of perturbation terms. The solitons due to sine-Gordon equation, double sine-Gordon equation, sine–cosine Gordon equation and double sine–cosine Gordon equations are studied, in this paper. The adiabatic variation of soliton velocity is obtained in this paper by soliton perturbation theory.  相似文献   

13.
The dynamics of homogeneous and inhomogeneous alpha helical proteins with interspine coupling is under investigation in this paper by proposing a suitable model Hamiltonian. For specific choice of parameters, the dynamics of homogeneous alpha helical proteins is found to be governed by a set of completely integrable three coupled derivative nonlinear Schrödinger (NLS) equations (Chen–Lee–Liu equations). The effect of inhomogeneity is understood by performing a perturbation analysis on the resulting perturbed three coupled NLS equation. An equivalent set of integrable discrete three coupled derivative NLS equations is derived through an appropriate generalization of the Lax pair of the original Ablowitz–Ladik lattice and the nature of the energy transfer along the lattice is studied.  相似文献   

14.
In this work, the completely integrable sixth-order nonlinear Ramani equation and a coupled Ramani equation are studied. Multiple soliton solutions and multiple singular soliton solutions are formally derived for these two equations. The Hirota’s bilinear method is used to determine the two distinct structures of solutions. The resonance relations for the three cases are investigated.  相似文献   

15.
A new method for analyzing linear elliptic partial differential equations in the interior of a convex polygon was developed in the late 1990s. This method does not rely on the classical approach of separation of variables and on the use of classical integral transforms and therefore is well suited for the investigation of the biharmonic equation. Here, we present a novel integral representation of the solution of the biharmonic equation in the interior of a convex polygon. This representation contains certain free parameters and therefore is more general than the one presented in [1]. For a given boundary value problem, by choosing these free parameters appropriately, one can obtain the simplest possible representation for the solution. This representation still involves certain unknown boundary values, thus for this formula to become effective it is necessary to characterize the unknown boundary values in terms of the given boundary conditions. This requires the investigation of certain relations refereed to as the global relations. A general approach for analyzing these relations is illustrated by solving several problems formulated in the interior of a semistrip. In addition, for completeness, similar results are presented for the Poisson equation by employing an integral representation for the Laplace equation which is more general than the one derived in the late 1990s.  相似文献   

16.
In the present study, we apply function transformation methods to the D-dimensional nonlinear Schrödinger (NLS) equation with damping and diffusive terms. As special cases, this method applies to the sine-Gordon, sinh-Gordon, and other equations. Also, the results show that these equations depend on only one function that can be obtained analytically by solving an ordinary differential equation. Furthermore, certain exact solutions of these three equations are shown to lead to the exact soliton solutions of a D-dimensional NLS equation with damping and diffusive terms. Finally, our results imply that the planar solitons, N multiple solitons, propagational breathers, and quadric solitons are solutions to the sine-Gordon, sinh-Gordon, and D-dimensional NLS equations.  相似文献   

17.
We study the instability of algebraic solitons for integrable nonlinear equations in one spatial dimension that include modified KdV, focusing NLS, derivative NLS, and massive Thirring equations. We develop the analysis of the Evans function that defines eigenvalues in the corresponding Lax operators with algebraically decaying potentials. The standard Evans function generically has singularities in the essential spectrum, which may include embedded eigenvalues with algebraically decaying eigenfunctions. We construct a renormalized Evans function and study bifurcations of embedded eigenvalues, when an algebraically decaying potential is perturbed by a generic potential with a faster decay at infinity. We show that the bifurcation problem for embedded eigenvalues can be reduced to cubic or quadratic equations, depending on whether the algebraic potential decays to zero or approaches a nonzero constant. Roots of the bifurcation equations define eigenvalues which correspond to nonlinear waves that are formed from unstable algebraic solitons. Our results provide precise information on the transformation of unstable algebraic solitons in the time-evolution problem associated with the integrable nonlinear equation. Algebraic solitons of the modified KdV equation are shown to transform to either travelling solitons or time-periodic breathers, depending on the sign of the perturbation. Algebraic solitons of the derivative NLS and massive Thirring equations are shown to transform to travelling and rotating solitons for either sign of the perturbation. Finally, algebraic homoclinic orbits of the focusing NLS equation are destroyed by the perturbation and evolve into time-periodic space-decaying solutions.  相似文献   

18.
The multiple-scale perturbation analysis is used to study the perturbed nonlinear Schrödinger’s equation, that describes the Langmuir waves in plasmas. The perturbation terms include the non-local term due to nonlinear Landau damping. The WKB type ansatz is used to define the phase of the soliton that captures the corrections to the pulse where the standard soliton perturbation theory fails.  相似文献   

19.
Perturbed nonlinear Schrödinger (NLS) equation with the power-law nonlinearity in a nano optical fiber is studied with the help of its equivalent two-dimensional planar dynamic system and Hamiltonian. Via the bifurcation theory and qualitative theory, equilibrium points for the two-dimensional planar dynamic system are obtained. With the external perturbation taken into consideration, chaotic motions for the perturbed NLS equation with the power-law nonlinearity are derived based on the equilibrium points.  相似文献   

20.
The adiabatic evolution of soliton solutions to the unstable nonlinear Schrödinger (UNS) and sine-Gordon (SG) equations in the presence of small perturbations is reconsidered. The transport equations describing the evolution of the solitary wave parameters are determined by a direct multiple-scale asymptotic expansion and by phase-averaged conservation relations for an arbitrary perturbation. The evolution associated with a dissipative perturbation is explicitly determined and the first-order perturbation fields are also obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号