首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of 6 equivalents of GaCp*(Cp*= pentamethylcyclopentadienyl) with [{Cp*RhCl2}2] yields the complex [Cp*Rh(GaCp*)3(Cl)2] (1) exhibting a cage-like intermetallic RhGa3 center with Ga-Cl-Ga bridges. Treatment of this complex with GaCl3 gives the Lewis acid-base adduct [Cp*Rh(GaCp*)2(GaCl3)]. (2) Reaction of [{Cp*RhCl2}2] with understoichiometric amounts of E(I)Cp*(E = Al, Ga, In) leads to a variety of products strongly dependent on the molecular ratio of the reactants. Thus, the reduction of [{Cp*RhCl2}2] with one equivalent of E(I)Cp*(E = Al, Ga, In) gives the RhII dimer [{Cp*RhCl}2]. The insertion of 3 equivalents of InCp* into the Rh-Cl bonds of [{Cp*RhCl2}2] yields the salt [Cp*2Rh]+[Cp*Rh(InCp*){In2Cl4(mu2-Cp*)}]- (3), the anion exhibiting an intermetallic RhIn(3) center with an intramolecularly bridging Cp* ring. The reaction of [{Cp*RhCl}2] with Cp*Ga yields various insertion products. In trace amount the "all hydrocarbon" cluster complex [(RhCp*)2(GaCp*)3] (6) is obtained. The corresponding ethylene containing cluster complex [{RhCp(GaCp*)(C2H4)}2] (7) can be prepared by treatment of [RhCp*(CH3CN)(C2H4)] with GaCp*.  相似文献   

2.
The organochalcogen ligands derived from 3-methyl-imidazole-2-thione/selone groups, Mbit, Mbis, Ebit and Ebis [Mbit = 1,1'-methylenebis(3-methyl-imidazole-2-thione); Mbis = 1,1'-methylenebis(3-methyl-imidazole-2-selone), Ebit = 1,1'-(1,2-ethanediyl)bis(3-methyl-imidazole-2-thione), Ebis = 1,1'-(1,2-ethanediyl)bis(3-methyl-imidazole-2-selone)] have been synthesized and characterized. Reactions of [Cp*Ir(micro-Cl)Cl]2 and [Cp*Rh(micro-Cl)Cl]2 (Cp* = eta5-pentamethylcyclopentadienyl) with Mbit, Mbis, Ebit and Ebis result in the formation of the complexes [Cp*Ir(Mbit)Cl]Cl 1a x Cl), [Cp*Ir(Mbis)Cl]Cl (3a x Cl), [Cp*Ir(Ebit)Cl]Cl (1b x Cl), [Cp*Ir(Ebis)Cl]Cl (2a x Cl), [Cp*Rh(Mbit)Cl]Cl (2b x Cl), Cp*Rh(Mbis)Cl][Cp*RhCl(3)] (3b x[Cp*RhCl(3)]), [Cp*Rh(Ebit)Cl]Cl (4a x Cl) and [Cp*Rh(Ebis)Cl]Cl (4b x Cl), respectively. All compounds have been characterized by elemental analysis, NMR and IR spectra. The molecular structures of 1b, 2b, 3a, 3b and 4a have been determined by X-ray crystallography. After activation with methylaluminoxane (MAO), the iridium complexes exhibit moderate activities for the vinyl polymerization of norbornene.  相似文献   

3.
A synthetic method for azaheterocycles from aryl ketone O-acetyl oximes and internal alkynes has been developed by using the Cu(OAc)(2)-[Cp*RhCl(2)](2) bimetallic catalytic system. The reactions proceeded with both of anti- and syn-isomers of oximes with a wide scope of substituents. The Cu-Rh bimetallic system could be applied for the synthesis of isoquinolines as well as β-carboline, furo[2.3-c]pyridine, pyrrolo[2,3-c]pyridine, and thieno[2,3-c]pyridine derivatives.  相似文献   

4.
Mao J  Baker DC 《Organic letters》1999,1(6):841-843
[formula: see text] A chiral rhodium complex, (R)-Cp*RhCl[(1S,2S)-p-TsNCH(C6H5)CH(C6H5)NH2] (1a, (S,S)-Cp*RhClTsDPEN), generated from [Cp*RhCl2]2 and (1S,2S)-N-p-toluenesulfonyl-1,2-diphenylethylenediamine [(S,S)-TsDPEN], and its enantiomer 1b were found to provide superior catalysts for the rapid, high-yielding, asymmetric transfer hydrogenation of some heterocyclic imines, using an HCO2H-Et3N azeotrope as the hydrogen source.  相似文献   

5.
Too PC  Wang YF  Chiba S 《Organic letters》2010,12(24):5688-5691
A synthetic method of isoquinolines from aryl ketone O-acyloxime derivatives and internal alkynes has been developed using [Cp*RhCl(2)](2)-NaOAc as the potential catalyst system. The present transformation is carried out by a redox-neutral sequence of C-H vinylation via ortho-rhodation and C-N bond formation of the putative vinyl rhodium intermediate on the oxime nitrogen, where the N-O bond of oxime derivatives could work as an internal oxidant to maintain the catalytic cycle.  相似文献   

6.
Herein we describe different C-C coupling reactions of permethyltitanocene and -zirconocene with disubstituted 1,3-butadiynes. The outcomes of these reactions vary depending on the metals and the diyne substituents. The reduction of [Cp2*MCl2] (Cp* = C5Me5; M = Ti, Zr) with Mg in the presence of disubstituted butadiynes RC triple bond C-C triple bond CR' is suitable for the synthesis of different C-C coupling products of the diyne and the permethylmetallocenes, and provides a new method for the generation of functionalized pentamethyl-cyclopentadienyl derivatives. For M = Zr and R = R' = tBu, the reaction gives, by a twofold activation of one pentamethylcyclopentadienyl ligand, the complex [Cp*Zr[-C(=C=CHtBu)-CHtBu-CH2-eta5-C5Me3-CH2-]] (3), containing a fulvene ligand that is coupled to the modified substrate (allenic subunit). When using the analogous permethyltitanocene fragment "Cp2*Ti", the reaction depends strongly on the substituents R and R'. The coupling product of the butadiyne with two methyl groups of one of the pentamethylcyclopentadienyl ring systems, [Cp*Ti[eta5-C5Me3-(CH2-CHR-eta2-C2-CHR'-CH2)]], is obtained with R = R' = tBu (4) and R = tBu, R' = SiMe3 (5). In these complexes one pentamethylcyclopentadienyl ligand is annellated to an eight-membered ring with a C-C triple bond, which is coordinated to the titanium center. A different activation of both pentamethylcyclopentadienyl ligands is observed for R = R' = Me, resulting in the complex [[eta5-C5Me4(CH2)-]Ti[-C(=CHMe)-C(=CHMe)-CH2-eta5-C5Me4]] (6), which displays a fulvene as well as a butadienyl-substituted pentamethylcyclopentadienyl ligand. The influence exerted by the size of the metal is illustrated in the reaction of [Cp2*ZrCl2] with MeC triple bond C-C triple bond CMe. Here the five-membered metallacyclocumulene complex [Cp2*Zr(eta4-1,2,3,4-MeC4Me)] (7) is obtained. The reaction paths found for R = R' = Me are identical to those formerly described for R = R' = Ph.  相似文献   

7.
A Rh(III) complex generated in situ from [Cp*RhCl2]2 and (1R,2R)-N-(p-toluenesulfonyl)-1,2-cyclohexanediamine (TsCYDN) serves as a remarkably effective, robust catalyst for the asymmetric transfer hydrogenation of aromatic ketones by HCOONa in water in air, affording alcohols in up to 99% ee.  相似文献   

8.
CpCr(NO)(CO)_2与Fe(C_5H_4S)_2S反应,形成氧化-还原产物CpCr(NO)(SC_5H_4)_2Fe(1)。双杂核二茂铁化合物CpM(NO)(EC_5H_4)_2Fe[M=Mo,E=S(2a),Se(2b);M=W,E=S(4a),Se(4b)]、CpMo(NO)(SC_5H_4)_2Fe(3)、Cp_2Mo(SeC_5H_4)_2Fe(6)和Cp_2W(SC_5H_4)_2Fe(7)可通过Fe(C_5H_4ELi)_2·2THF(E=S,Se)与CpM(NO)I_2(M=Mo,W)、[CpMo(NO)I_2]_2或Cp_2MCl_2(M=Mo,W)反应制得。三核杂原子二茂铁化合物[CpCr(NO)_2]_2(EC_5H_4)_2Fe[E=S(8a),Se(8b)],由Fe(C_5H_4ELi)_2·2THF(E=S,Se)与二倍摩尔量的CpCr(NO)_2I反应制备。通过AgBF_4氧化2a得到二茂铁离子型化合物[CpMo(NO)(SC_5H_4)_2Fe]~ BF_4~-(5)。采用元素分析、红外光谱、~1H和~(13)C NMR谱以及EI-MS表征了所合成的新型化合物。  相似文献   

9.
Reaction of [Cp*IrCl2]2 (1) with dpmp in the presence of KPF6 afforded a binuclear complex [Cp*IrCl(dpmp-P1,P2;P3)IrCl2Cp*](PF6) (2) (dpmp =(Ph2PCH2)2PPh). The mononuclear complex [Cp*IrCl(dpmp-P1,P2)](PF6) (4) was generated by the reaction of [Cp*IrCl2(BDMPP)](BDMPP =PPh[2,6-(MeO)2C6H3]2) with dpmp in the presence of KPF6. These mono- and binuclear complexes have four-membered ring structures with a terminal and a central P atom of the dpmp ligand coordinated to an iridium atom as a bidentate ligand. Since there are two chiral centers at the Ir atom and a central P2 atom, there are two diastereomers that were characterized by spectrometry. Complexes anti-4 and syn-4 reacted with [Cp*RhCl2]2 or [(C6Me6)RuCl2]2, giving the corresponding mixed-metal complexes, anti- and syn- [Cp*IrCl(dppm-P1,P2;P3)MCl2L](PF6) (6: M = Rh, L = Cp*; 7: M = Ru, L = C6Me6). Treatment with AuCl(SC4H8) gave tetranuclear complexes, anti- and syn-8 [[Cp*IrCl(dppm-P1,P2;P3)AuCl]2](PF6)2 bearing an Au-Au bond. Reaction of anti- with PtCl2(cod) generated the trinuclear complex anti-9, anti-[[Cp*IrCl(dppm-P1,P2;P3)]2PtCl2](PF6)2. These reactions proceeded stereospecifically. The P,O-chelated complex syn-[Cp*IrCl(BDMPP-P,O)] (syn-10)(BDMPP-P,O = PPh[2,6-(MeO)2C6H3][2-O-6-(MeO)C6H3]2) reacted with dpmp in the presence of KPF6, generating the corresponding anti-complex as a main product as well as a small amount of syn-complex, [Cp*Ir(BDMPP-P,O)(dppm-P1)](PF6) (11). The reaction proceeded preferentially with inversion. The reaction processes were investigated by PM3 calculation. anti- was treated with MCl2(cod), giving anti-[Cp*Ir(BDMPP-P,O)(dppm-P1;P2,P3)MCl2](PF6)(14: M = Pt; 15: M = Pd), in which the MCl2 moiety coordinated to the two free P atoms of anti-11. The X-ray analyses of syn-2, anti-2, anti-4, anti-8 and anti-11 were performed.  相似文献   

10.
Trivalent Cp*(2)U(2,2'-bpy) (2) (Cp* = C(5)Me(5), 2,2'-bpy = 2,2'-bipyridine), which has a monoanionic bipyridine, was treated with p-tolualdehyde (a), furfuraldehyde (b), acetone (c), and benzophenone (d). Reduction of the C[double bond, length as m-dash]O bond followed by radical coupling with bipyridine forms the U(iv) derivatives [Cp*(2)U(2,2'-bpy)(OCRR')] (3a-d).  相似文献   

11.
The new titanium dicarboxylate complex Cp*TiMe(OOC)2py (2) [Cp*=eta5-C5Me5; (OOC)2py = 2,6-pyridinedicarboxylate] has been synthesized. The reaction of complex 2 with water renders [Cp*Ti(OOC)2py]2O (3). The molecular structure of 3 has been studied by X-ray diffraction methods. Complex 2 reacts with isocyanides to yield the respective iminoacyl derivatives Cp*Ti(eta2-MeCNR)(OOC)2py [R=tBu (4), 2,6-dimethylphenyl (xylyl) (5)]. The molecular structure of complex4 has been established by X-ray diffraction. Compound 2 has been employed as a new building block for the preparation of new early-late heterometallic compounds; it reacts with [M(mu-OH)(COD)]2 (M = Rh, Ir) to give the corresponding tetranuclear metallomacrocycle derivatives [Cp*Ti{(OOC)(2)py}(mu-O)M(COD)]2 [M = Rh (6); Ir (7)]. The molecular structure of 6 has been established by X-ray diffraction.  相似文献   

12.
The reaction of Cp*RhCl2(PPh3) 1 with 1-alkyne and H2O in the presence of KPF6 afforded the alkenyl ketone complex [Cp*Rh(PPh3)(CPh=CHCOCH2R)](PF6) [R = p-tolyl (3a), R = Ph (3b)], whereas Cp*IrCl2(PPh3) 2 or [(eta 6-C6Me6)RuCl2(PPh3) gave the corresponding [Cp*IrCl(CO)(PPh3)](PF6) 5a and [(eta 6-C6Me6)RuCl(CO)(PPh3)](PF6).  相似文献   

13.
A straightforward method for the synthesis of enantiomerically pure bis(valine)metallocenes is presented. Derivatives of lithium cyclopentadienylvaline 1a, b were obtained by addition of the (R)- or (S)-Sch?llkopf reagents to 6,6-dimethylfulvene as single enantiomers and gave with FeCl2 or [RuCl2(dmso)4] the chiral metallocenes [Fe[C5H4-CMe2-[C4H2N2(OMe)2iPr]]2] (2a, b) and [Ru[C5H4-CMe2-[C4H2N2(OMe)2iPr]]2] (3a, b). Complex 2b was hydrolyzed to the ferrocenylene-bis(valine-methylester) [[Fe[C5H4-CMe2-CH(NH3+)COOMe]2]2+(Cl-)2] (7) without racemization. Complex 7 could be used as ligand and was treated with [[Cp*IrCl2]2] to afford [Fe[C5H4-CMe2-CH(COOMe)(NH2-IrCp*Cl2)]2] (10). The reactions of 1 with CoCl2, [Re(CO)5Br], [[(cod)RhCl2]2] (cod= 1,5-cyclooctadiene) or [Cp*MCl3] (M= Ti, Zr) gave the cyclopentadienyl complexes [[Co[C5H4-CMe2-[C4H2N2(OMe)2iPr]]2]+ I-] (11) and [Re[C5H4-CMe2-[C4H2N2(OMe)2iPr]](CO)3] (13), [(C8H12)Rh[C5H4-CMe2-[C4H2N2(OMe)2(iPr)]]] (14). [[Rh[C5H4-CMe2-[C4H2N2(OMe)2(iPr)]]I]2(mu-I)2] (15), [Cp*Cl2Ti-[C5H4-CMe2-[C4H2N2(OMe)2(iPr)]]] (16), and [Cp*Cl2Zr[C5H4-CMe2-[C4H2N2(OMe)2(iPr)]]] (17), with chiral valine derivatives as substituents on the cyclopentadienyl ring and with excellent diastereoselectivities. Also the Seebach reagent (Boc-BMI) or O'Donnell reagent could be added to 6,6-dimethylfulvene to give the lithium cyclopentadienides Li[C5H4-CMe2-[C3H2(tBu)(N-Boc)(NMe)O]] (18) and Li[C5H4-CMe2-CH(NCPh2)(COOEt)] (21), which formed the ferrocene derivatives [Fe[C5H4-CMe2-[C3H2(tBu)(N-Boc)(NMe)O]]2] (19) and [Fe[C5H4-CMe2-CH(NCPh2)(COOEt)]2] (22). The stable cobaltocinium cation in 11 and the complex 19 could be hydrolyzed to the metallocenes 12 and [Fe(C5H4-CMe2-CH(NH3+)(COO-)]2] (20) with two valines in the 1,1'-position. The structures of 2a, b, 11, 15, and 16 were determined by X-ray diffraction and confirm the diastereomeric purity of the compounds.  相似文献   

14.
Reactions of [Tp*Rh(coe)(MeCN)](; Tp*= HB(3,5-dimethylpyrazol-1-yl)(3); coe = cyclooctene) with one equiv. of the organic disulfides, PhSSPh, TolSSTol (Tol = 4-MeC(6)H(4)), PySSPy (Py = 2-pyridyl), and tetraethylthiuram disulfide in THF at room temperature afforded the mononuclear Rh(III) complexes [Tp*Rh(SPh)(2)(MeCN)](3a), [Tp*Rh(STol)(2)(MeCN)](3b), [Tp*Rh(eta(2)-SPy)(eta(1)-SPy)](6), and [Tp*Rh(eta(2)-S(2)CNEt(2))(eta(1)-S(2)CNEt(2))](7), respectively, via the oxidative addition of the organic disulfides to the Rh(I) center in 1. For the Tp analogue [TpRh(coe)(MeCN)](2, Tp = HB(pyrazol-1-yl)(3)), the reaction with TolSSTol proceeded similarly to give the bis(thiolato) complex [TpRh(STol)(2)(MeCN)](4) as a major product but the dinuclear complex [[TpRh(STol)](2)(micro-STol)(2)](5) was also obtained in low yield. Complex 3 was treated further with the Rh(III) or Ir(III) complexes [(Cp*MCl)(2)(micro-Cl)(2)](Cp*=eta(5)-C(5)Me(5)) in THF at room temperature, yielding the thiolato-bridged dinuclear complexes [Tp*RhCl(micro-SPh)(2)MCp*Cl](8a: M = Rh, 8b: M = Ir). Dirhodium complex [TpRhCl(micro-STol)(2)RhCp*Cl](9) was obtained similarly from 4 and [(Cp*RhCl)(2)(micro-Cl)(2)]. Anion metathesis of 8a proceeds only at the Rh atom with the Cp* ligand to yield [Tp*RhCl(micro-SPh)(2)RhCp*(MeCN)][PF(6)](10), when treated with excess KPF(6) in CH(2)Cl(2)-MeCN. The X-ray analyses have been undertaken to determine the detailed structures of 3b, 4, 5, 6, 7, 8a, 9, and 10.  相似文献   

15.
Solutions of Rh2(OAc)4 and Et4N[Cp*Ir(CN)3] react to afford crystals of the one-dimensional coordination solid [Et4N[Cp*Ir(CN)3][Rh2(OAc)4]]. This reaction is reversed by coordinating solvents such as MeCN. The structure of the polymer consists of helical anionic chains containing Rh2(OAc)4 units linked via two of the three CN ligands of Cp*Ir(CN)3-. Use of the more Lewis acidic Rh2(O2CCF3)4 in place of Rh2(OAc)4 gave purple [(Et4N)2[Cp*Ir(CN)3]2[Rh2(O2CCF3)4]3], whose insolubility is attributed to stronger Rh-NC bonds as well as the presence of cross-linking. The species [[Cp*Rh(CN)3][Ni(en)n](PF6)] (n = 2, 3) crystallized from an aqueous solution of Et4N[Cp*Rh(CN)3] and [Ni(en)3](PF6)2; [[Cp*Rh(CN)3][Ni(en)2](PF6)] consists of helical chains based on cis-Ni(en)(2)2+ units. Aqueous solutions of Et4N[Cp*Ir(CN)3] and AgNO3 afforded the colorless solid Ag-[Cp*Ir(CN)3]. Recrystallization of this polymer from pyridine gave the hemipyridine adduct [Ag[Ag(py)][Cp*Ir(CN)3]2]. The 13C cross-polarization magic-angle spinning NMR spectrum of the pyridine derivative reveals two distinct Cp* groups, while in the pyridine-free precursor, the Cp*'s appear equivalent. The solid-state structure of [Ag[Ag(py)][Cp*Ir(CN)3]2] reveals a three-dimensional coordination polymer consisting of chains of Cp*Ir(CN)3- units linked to alternating Ag+ and Ag(py)+ units. The network structure arises by the linking of these helices through the third cyanide group on each Ir center.  相似文献   

16.
The tetraphenylborate salt of the decamethyl titanocene cation, [Cp*2Ti][BPh4] (1, Cp* = C5Me5), was prepared by reaction of Cp*2TiH with [Cp2Fe][BPh4] and by reaction of Cp*2TiMe with [PhNMe2H][BPh4]. The crystal structure of 1 shows that the Cp*2Ti cation has a bent metallocene structure with agostic interactions with the metal center of two adjacent methyl groups on one of the Cp* ligands. Compound 1 reacts readily with THF to give the adduct [Cp*2Ti(THF)][BPh4] (2). In fluorobenzene, 1 forms the eta1-fluorobenzene adduct [Cp*2Ti(eta1-FC6H5)][BPh4] (3), which was structurally characterized. In contrast to the thermal stability of 3, addition of alpha,alpha,alpha-trifluorotoluene to either 1 or 2 results in C-F activation to give Cp*2TiF2 and PhCF2CF2Ph as the main products. This reactivity toward benzylic C-F bonds is also reflected in the reactivity toward the fluorinated borate anions [B(C6F5)4]- and {B(3,5-(CF3)2C6H3]4}-: reaction of Cp*2TiMe with their [PhNMe2H]+ salts results in a stable complex for the former anion, whereas rapid C-F activation is observed for the latter.  相似文献   

17.
From reaction of [(Cp*Ir)2HxCl(4-x)] (x=1, 0) and LiBH4, arachno-[[Cp*IrH2]B3H7](1) is produced in moderate yield concurrently with [Cp*IrH4]. In contrast, reaction of [(Cp*Ir)2H2Cl2] with LiBH4 results in arachno-[[Cp*IrH]2(mu-H)B2H5] (3) in high yield at room temperature but a mixture of 1 and [[Cp*IrH]2(mu-H)BH4] (2) at 0 degrees C. BH3 x THF converts 1 to arachno-[(Cp*IrHB4H9] (4) and 2 to 3 with 1 as a minor product. Further, reaction of 3 with excess of BH3 x THF results in formation of nido-[[Cp*Ir]2-(mu-H)B4H7] (6) formed by loss of H2 from the intermediate arachno-[[Cp*IrH]2B4H8] (5). Reaction of 1 with [Co2(CO)8] permits the isolation of two metallaboranes, arachno-[[Cp*Ir(CO)]-B3H7] (7) and nido-[1-[Cp*Ir]-2,3-Co2-(CO)4(mu-CO)B3H7] (8). Treatment of 4 with [Co2(CO)8] gives only one single mixed-metal metallaborane nido-[1-[Cp*Ir]-2-Co(CO)3B4H7 (9) in high yield. Finally, pyrolysis of 8 results in loss of hydrogen and formation of pileo-[1-[Cp*Ir]-2,3-Co2(CO)5B3H5] (10) with a BH-capped square-pyramidal structure. With kinetic control rational synthesis of a variety metallaboranes has been achieved by varying the number of chlorides in the monocyclopentadienylmetal halide dimer, reaction temperature, types of monoborane, and metal fragment sources.  相似文献   

18.
三齿配体三(2-巯基-1-甲基咪唑)硼酸盐[TmMe]K与含有半夹心结构金属铱和铑化合物[Cp*Ir(μ-Cl)Cl]2和[Cp*Rh(μ-Cl)Cl]2反应形成具有18电子结构的配合物[Cp*Ir(TmMe)]Cl(1)和[Cp*Rh(TmMe)]Cl(2).所有的化合物都经过IR,NMR和EA表征,并通过X-射线衍射单晶结构分析测定了配合物2的分子结构.  相似文献   

19.
Complete donor-induced alkylaluminate cleavage of halfmetallocene complex Cp*Y(AlMe4)2, that is, treatment of Cp*Y(AlMe4)2 with 2 equiv of diethyl ether, produces [Cp*Y(mu2-Me)2]3 in high yield (95%). In contrast, the equimolar reaction of Cp*Y(AlMe4)2 with diethyl ether reproducibly formed complex [Cp*4Y4(mu2-CH3)2{(CH3)Al(mu2-CH3)2}4(mu4-CH)2] in low yield (10-30%) via a multiple C-H bond activation. The synthesis of the heterooctametallic yttrium-aluminum-methine cluster was also accomplished in moderate yield (47%) by the equimolar reaction of discrete Cp*Y(AlMe4)2 and [Cp*Y(mu2-Me)2]3 in the absence of any donor solvent and "free" AlMe3. This gives strong evidence that preformed heterometal-bridged Y-CH3-Al moieties are prone to multiple hydrogen abstraction in the presence of a highly basic reagent such as [Cp*Y(mu2-Me)2]3. The monocylopentadienyl complexes [Cp*Y(mu2-Me)2]3 and [Cp*4Y4(mu2-CH3)2{(CH3)Al(mu2-CH3)2}4(mu4-CH)2] were structurally characterized.  相似文献   

20.
The catalytic transformations of functional alkynes with diazoalkanes in the presence of the catalyst precursor RuCl(COD)Cp* are presented. They show the unique role played by the Ru(X)Cp* moiety in catalysis and that the nature of the formed products strongly depends on the alkyne functionality. Simple alkynes generate dienes via double diazoalkane carbene addition to the triple bond. Enynes with terminal triple bond lead to alkenyl bicyclo[x.1.0]alkanes, including bicyclic aminoacid derivatives. 1,6-enynes with disubstituted propargylic carbon produce in priority alkenyl alkylidene cyclopentanes. 1,6-Allenynes offer the direct access to alkenyl alkylidene bicyclo[3.1.0]hexanes. Propargylic carboxylates lead to conjugated dienes by coupling of the diazoalkane carbene with the alkyne terminal carbon and 1,2-shift of the carboxylate. All catalytic reactions can be explained by the initial formation of the 16 electron RuCl(CHR)Cp* moiety giving first a 2+2 cycloaddition with the alkyne triple bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号