共查询到19条相似文献,搜索用时 45 毫秒
1.
2.
3.
采用传统陶瓷工艺制备了不同MgO添加量的Al2O3透明多晶陶瓷;研究了Al2O3透明陶瓷的光谱性能,发现在410和294 nm处有明显的发射峰.通过对其激发和吸收光谱的研究,表明它们分别是由F+和F色心造成的.进一步的分析显示,这些色心是由于陶瓷中加入的添加剂MgO产生的氧空位所致. 相似文献
4.
5.
白光LED用荧光材料Ba3 Gd( BO3 )3:Eu3+的发光性能研究 总被引:1,自引:0,他引:1
用高温固相反应法制备了稀土离子Eu3+ 掺杂的三元稀土硼酸盐Ba3Gd(BO3)3发光材料, 通过X射线衍射 (XRD) 、荧光光谱和扫描电镜 (SEM) 等测试手段对Ba3Gd(BO3)3:Eu3+ 荧光粉的制备条件、发光性能以及形貌进行了研究. XRD结果表明, 在1000 ℃时可得到Ba3Gd(BO3)3 纯相. 扫描电镜照片显示颗粒基本为球形, 粒径约为200~400 nm. 发光光谱测试表明, Ba3Gd(BO3)3:Eu3+荧光粉在近紫外区(UV) (396 nm)和蓝光区(466 nm)可以被有效地激发, 分别用255和396 nm的紫外光激发样品时, 以Eu3+ 的 5D0-7F2 (611和616 nm) 超灵敏跃迁为主要发射峰. 当Eu3+的掺杂浓度为10%(摩尔分数)时, Ba3Gd(BO3)3:Eu3+ 在611和616 nm处的发光强度最大. 因此, 这种荧光粉是一种可能应用在白光LED上的红色荧光材料. 相似文献
6.
采用均相沉淀法制备了均匀球形的Gd2O3:Eu3+@Y2O3核壳结构纳米发光材料.XRD结果表明经过800℃焙烧后样品为立方晶系的Gd2O3,并且晶体发育良好,包覆Y2O3之后Gd2O3的衍射峰位置无明显变化,但随着包覆厚度的增加,出现了立方晶系Y2O3的衍射峰.FTIR谱图观测到了Gd-O,Y-O伸缩振动吸收峰,随着包覆厚度的减少吸收峰增强,认为当包覆层的厚度适当时,颗粒表面的悬空键(断键)变少,Gd(Eu,Y)-O键增多所致.SEM表明包覆前后样品为均匀分散的球形结构.XPS分析进一步证明了表面包覆上了Y2O3.荧光光谱表明:纳米Gd2O3:Eu3+表面包覆不同厚度的基质Y2O3后,均观测到Eu3+离子的特征红光发射,当包覆厚度R=4:1时的发光强度比未包覆的Gd2O3:Eu3+增强,认为核-壳型样品降低了纳米Gd2O3:Eu3+的表面效应给发光强度带来的负面影响. 相似文献
7.
采用共沉淀法和燃烧法分别制备得到纳米和亚微米的Lu2O3∶Bi^3+的粉末晶体。立方结构,属Ia3^-[206]空间群,晶格常数a=1.039 nm,密度高达9.4 g·cm^-3。利用XRD,TEM,荧光光谱和阴极射线发光等方法,研究了不同的制备方法和条件对制成样品的结构、形貌、发光亮度、光谱以及余辉的影响。两种方法制得的样品在紫外和阴极射线激发下,有亮度较高的兰青色的发光。余辉较短,衰减曲线是单指数型。 相似文献
8.
La2O3对氧化铝透明陶瓷显微结构和透光性能的影响 总被引:4,自引:1,他引:4
采用传统无压烧结工艺在氢气氛下制备Al2O3透明陶瓷。实验结果表明:MgO和La2O3复合添加时,随着La2O3掺杂量的增加体积密度总体上保持上升的趋势。随着保温时间的延长,陶瓷的致密化程度增大,残余气孔逐步排出,晶粒进一步长大。采用La2O3和MgO复合添加比单独掺入MgO陶瓷样品透过率更高,掺杂效果更好。在烧结温度为1750℃,保温时问为1h条件下,在波艮为300~800nm测试范围内,陶瓷样品的全透过率大于82%,最大值为86%。 相似文献
9.
采用草酸沉淀法,通过填加表面活性剂四丁基溴化铵、十六烷基三甲基溴化铵和金属离子K+,Mg2+,Ba2+,制备出稀土发光材料Y2O3Eu3+,利用XRD与激发和发射光谱等测试手段对样品的结构与光学性能进行了表征,考察了同时加入不同表面活性剂和金属离子对Y2O3Eu3+的结构和发光性质的影响.结果表明加入表面活性剂和金属离子对发光材料Y2O3Eu3+的发光性能有较大的影响,其中以同时加入四丁基溴化铵和Ba2+以及加入十六烷基三甲基溴化铵和Mg2+对Y2O3Eu3+粉体的发光性能影响最大. 相似文献
10.
11.
Gd2O3:Eu3+ X射线溶胶-凝胶发光薄膜的制备与表征 总被引:2,自引:0,他引:2
高分辨率X射线成像系统要求其发光材料同时具有X射线截止本领强、光产额高、余辉短以及与光电器件波长匹配好等特性. Gd2O3:Eu3 因其优越的发光性能和Eu3 红光发射等优点而在高能射线激发发光材料中占有重要地位. 近几年发展起来的透明X射线薄膜发光材料具有更高的衬度和空间分辨率、热传导率、均匀性和附着力等优点[1], 因而有望成为取代传统荧光粉的新一代X射线成像材料. 在各种薄膜制备工艺中, 溶胶-凝胶法以其价格低廉、工艺简单、制备温度低、均匀性好、可实现微量掺杂等优点而日益受到人们重视, 通过该方法并辅以适当的后处理工艺可制备出透明、致密的薄膜. 相似文献
12.
13.
以尿素为燃烧剂,乙二醇为分散剂采用燃烧法制备了Gd3Ga5O12∶Eu3+纳米晶。利用X射线衍射、电镜和荧光光谱对前驱体和热处理后样品的结构、形貌和发光性能进行了表征。XRD结果表明:700℃热处理2 h即可获得立方结构Gd3Ga5O12∶Eu3+纳米晶。根据Scherrer公式估算经700℃和900℃热处理2 h获得的纳米晶的一次性粒径分别为28 nm和42 nm。发射光谱和激发光谱的结果表明:特征发射峰来自于5D0-7FJ跃迁,而来自于Eu3+的5D0→7F1的磁偶极跃迁发射最强;宽激发带主要来自于Eu-O电荷迁移带和Gd3Ga5O12基质吸收。发射强度和激发强度随热处理温度的提高而增强。 相似文献
14.
采用甘氨酸-硝酸盐法制备了Ce0.8Gd0.2O1.85(GDC82)阳极材料。用TGA-DSC对前驱体物料烧结过程进行分析。用XRD,SEM,直流四探针法,TPR等技术对材料的性能进行表征。前驱体物料经燃烧后,900℃下烧结4 h后,得到单一萤石结构的材料。在50~850℃范围内,GDC82材料在空气气氛下的电导率整体较小,且随温度的升高变化不大,在850℃为0.05 S.cm-1。GDC82在H2气氛下的总电导率整体增加,且随温度的升高而迅速增加,850℃达到0.4 S.cm-1。GDC82与电解质材料La1-xSrxGa1-yMgyO3-δ(LSGM)混合物在1200℃下烧结15 h后,有少量MgCe杂相生成。GDC82与La1-xSrxCr1-yMnyO3-δ(LSCM)阳极材料化学相容性较好。GDC82对氢气和甲烷具有较好的催化氧化效果。 相似文献
15.
利用扩展X射线吸收精细结构光谱(EXAFS)研究了不同掺杂浓度Nd3+:Lu2O3纳米粉体和透明陶瓷中Nd3+的局域结构.结果表明,在不同条件下Nd3+均以固溶取代Lu3+的方式进入Lu2O3基质晶格,掺杂Nd3+原子的第一配位键长约为0.225 nm,小于Nd2O3纳米粉中Nd-O第一近邻键长0.251 nm,而大于... 相似文献
16.
17.
18.
采用低温燃烧法制备出Li+,Er3+共掺杂Gd2O3纳米粉体,将粉体压片成型后在1500℃真空条件下烧结10 h成功制备出Li+,Er3+共掺杂Gd2O3半透明陶瓷。对粉体和半透明陶瓷样品的晶体结构、形貌、显微结构和上转换发光特性等用XRD,TEM,SEM,FL等手段进行了表征和研究。结果表明:Li+和Er3+均匀地溶解于Gd2O3晶格之中。粉体颗粒近似球形,粒径约20~30 nm。烧结后半透明陶瓷致密度高,未见气孔存在,透光率高;在980 nm LD激发下有两个峰值波长分别为561 nm(绿光)和658 nm(红光)上转换发光带,分别对应4S3/2/2H11/2→4I15/2和4F9/2→4I15/2跃迁;Li+的掺杂抑制了Gd2O3由立方到单斜的相变,且使陶瓷样品中Er3+的上转换发光强度显著增强,红绿光之比大大提高。 相似文献
19.
黄永平 《影像科学与光化学》2007,25(2)
以稀土氧化物为原料,用溶胶-凝胶法制备前驱液,加入适量的聚乙烯醇做成膜物质,用浸渍拉提法在石英玻璃表面上得到均匀的薄膜,然后经过适当的干燥和热处理得到Y2O3∶Eu3+发光薄膜.讨论了Eu3+的掺杂浓度和热处理温度对薄膜发光性能的影响.试验表明:Eu3+的最佳掺杂浓度为8%(摩尔分数),薄膜的发光性能随热处理温度提高而增强,当热处理温度达到700℃后,薄膜的发光性能基本上稳定.同时用原子力显微镜和X射线衍射分析了薄膜的表面形貌和结构. 相似文献