首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Density functional theory calculations were performed for the title reactions to elucidate the difference between the strong cyclic hydrogen bond of (Me-COOH)(2) and the electrolytic dissociation, MeCOOH <==> Me-COO(-) + H(+), as a weak acid. The association of water clusters with acetic acid dimers strengthens the cyclic hydrogen bond. A nucleophilic attack of the carboxylic carbon by a water cluster leads to a first zwitterionic intermediate, MeCOO(-) + H(3)O(+) + (HO)(3)C-Me. The intermediate is unstable and is isomerized to a neutral interacting system, MeCOOH...(HO)(3)C-Me + H(2)O. The ethanetriol, (HO)(3)-CMe is transformed to an acetic acid monomer. The monomer may be dissociated to give a second zwitterionic intermediate with reasonable proton-relay patterns and energy changes. In proton relay reaction channels, H in MeCOOH is not an acidic proton but is always a hydroxy proton.  相似文献   

2.
Reliable mass spectrometry data from large water clusters Y(-)(H(2)O)(n) with various negative core ions Y(-) such as O(2)(-), HO(-), HO(2)(-), NO(2)(-), NO(3)(-), NO(3)(-)(HNO(3))(2), CO(3)(-) and HCO(4)(-) have been obtained using atmospheric pressure negative corona discharge mass spectrometry. All the core Y(-) ions observed were ionic species that play a central role in tropospheric ion chemistry. These mass spectra exhibited discontinuities in ion peak intensity at certain size clusters Y(-)(H(2)O)(m) indicating specific thermochemical stability. Thus, Y(-)(H(2)O)(m) may correspond to the magic number or first hydrated shell in the cluster series Y(-)(H(2)O)(n). The high intensity discontinuity at HO(-)(H(2)O)(3) observed was the first mass spectrometric evidence for the specific stability of HO(-)(H(2)O)(3) as the first hydrated shell which Eigen postulated in 1964. The negative ion water clusters Y(-)(H(2)O)(n) observed in the mass spectra are most likely to be formed via core ion formation in the ambient discharge area (760 torr) and the growth of water clusters by adiabatic expansion in the vacuum region of the mass spectrometers (≈1 torr). The detailed mechanism of the formation of the different core water cluster ions Y(-)(H(2)O)(n) is described.  相似文献   

3.
The report uses density functional theory to address the mechanism of heme degradation by the enzyme heme oxygenase (HO) using a model ferric hydroperoxide complex. HO is known to trap heme molecules and degrade them to maintain iron homeostasis in the biosystem. The degradation is initiated by complexation of the heme, then formation of the iron-hydroperoxo species, which subsequently oxidizes the meso position of the porphyrin by hydroxylation, thereby enabling eventually the cleavage of the porphyrin ring. Kinetic isotope effect studies indicate that the mechanism is assisted by general acid catalysis, via a chain of water molecules, and that all the events occur in concert. However, previous theoretical treatments indicated that the concerted mechanism has a high barrier, much higher than an alternative mechanism that is initiated by O-O bond homolysis of iron-hydroperoxide. The present contribution studies the stepwise and concerted acid-catalyzed mechanisms using H(3)O(+)(H(2)O)(n)(), n = 0-2. The effect of the acid strength is tested using the H(4)N(+)(H(2)O)(2) cluster and a fully protonated ferric hydroperoxide. All the calculations show that a stepwise mechanism that involves proton relay and O-O homolysis, in the rate-determining step, has a much lower barrier (>10 kcal/mol) than the corresponding fully concerted mechanism. The best fit of the calculated solvent kinetic isotope effect, to the experimental data, is obtained for the H(3)O(+)(H(2)O)(2) cluster. The calculated alpha-deuterium secondary kinetic isotope effect is inverse (0.95-0.98), but much less so than the experimental value (0.7). Possible reasons for this quantitative difference are discussed. Some probes are suggested that may enable experiment to distinguish the stepwise from the concerted mechanism.  相似文献   

4.
To understand the autoionization of pure water and the solvation of ammonia in water, we investigated the undissociated and dissociated (ion-pair) structures of (H2O) n and NH3(H2O)n-1 (n = 5, 8, 9, 21) using density functional theory (DFT) and second order Moller-Plesset perturbation theory (MP2). The stability, thermodynamic properties, and infrared spectra were also studied. The dissociated (ion-pair) form of the clusters tends to favor the solvent-separated ion-pair of H3O+/NH4+ and OH-. As for the NH3(H2O)20 cluster, the undissociated structure has the internal conformation, in contrast to the surface conformation for the (H2O)21 cluster, whereas the dissociated structure of NH3(H2O)20 has the surface conformation. As the cluster size of (H2O)n/NH3(H2O)n-1 increases, the difference in standard free energy between undissociated and dissociated (ion-pair) clusters is asymptotically well corroborated with the experimental free energy change at infinite dilution of H3O+/NH4+ and OH-. The predicted NH and OH stretching frequencies of the undissociated and dissociated (ion-pair) clusters are discussed.  相似文献   

5.
In this study, the thermodynamic functions of hydrogen abstraction from the C(α) and amide nitrogen of Gly(3) in a homo-pentapeptide (N-Ac-GGGGG-NH(2); G5) by HO(●), HO(2)(●), and O(2)(-●) were computed using the Becke three-parameter Lee-Yang-Parr (B3LYP) density functional. The thermodynamic functions, standard enthalpy (ΔH°), Gibbs free energy (ΔG°), and entropy (ΔS°), of these reactions were computed with G5 in the 3(10)-helical (G5(Hel)) and fully-extended (G5(Ext)) conformations at the B3LYP/6-31G(d) and B3LYP/6-311+G(d,p) levels of theory, both in the gas phase and using the conductor-like polarizable continuum model implicit water model. H abstraction is more favorable at the C(α) than at the amide nitrogen. The secondary structure of G5 affects the bond dissociation energy of the H-C(α), but has a negligible effect on the dissociation energy of the H-N bond. The HO(●) radical is the strongest hydrogen abstractor, followed by HO(2)(●), and finally O(2)(-●). The secondary structure elements, such as H-bonds in the 3(10)-helix, protect the peptide from radical attack by disabling the potential electron delocalization at the C(α), which is possible when G5 is in the extended conformation. The unfolding of the peptide radicals is more favorable than the unfolding of G5(Hel); however, only the HO(●) can initiate the unfolding of G5(Hel) and the formation of G5(Ext)(●). These results are relevant to peptides that are prone to undergoing transitions from helical structures to β-sheets in the cellular condition known as "oxidative stress" and the results are discussed in this context.  相似文献   

6.
Results from a theoretical study of the interactions of a OH radical on (H2O)20, (H2O)24, and (H2O)28 clusters used as a novel model of a water droplet are presented. This work shows that there is competition between OH radicals trapped on the surface and those encapsulated inside of a water cage. This is contrary to previous findings of HO2 radical interactions with water clusters. Natural bond orbital (NBO) analysis is used to analyze the bonding feature of OH to help explain the difference in behavior between OH and HO2 radicals toward a water surface.  相似文献   

7.
The photochemistry of mass selected CO(2) (-)(H2O)(m), m=2-40 cluster anions is investigated using 266 nm photofragment spectroscopy and theoretical calculations. Similar to the previous 355 nm experiment [Habteyes et al., Chem. Phys. Lett. 424, 268 (2006)], the fragmentation at 266 nm yields two types of anionic products: O(-)(H2O)(m-k) (core-dissociation products) and CO(2) (-)(H2O)(m-k) (solvent-evaporation products). Despite the same product types, different electronic transitions and dissociation mechanisms are implicated at 355 and 266 nm. The 355 nm dissociation is initiated by excitation to the first excited electronic state of the CO(2) (-) cluster core, the 1 (2)B(1)(2A") state, and proceeds via a glancing Renner-Teller intersection with the ground electronic state at a linear geometry. The 266 nm dissociation involves the second excited electronic state of CO(2) (-), the 2 (2)A(1)(2A') state, which exhibits a conical intersection with the 3 (2)B(2)(A') state at a bent geometry. The asymptotic O(-) based products are believed to be formed via this 3 (2)B(2)(A') state. By analyzing the fragmentation results, the bond dissociation energy of CO(2) (-) to O(-)+CO in hydrated clusters (m> or =20) is estimated as 2.49 eV, compared to 3.46 eV for bare CO(2) (-). The enthalpy of evaporation of one water molecule from asymptotically large CO(2) (-)(H(2)O)(m) clusters is determined to be 0.466+/-0.001 eV (45.0+/-0.1 kJ/mol). This result compares very favorably with the heat of evaporation of bulk water, 0.456 eV (43.98 kJ/mol).  相似文献   

8.
The H(2)-evolving potential of [FeFe] hydrogenases is severely limited by the oxygen sensitivity of this class of enzymes. Recent experimental studies on hydrogenase from C. reinhardtii point to O(2)-induced structural changes in the [Fe(4)S(4)] subsite of the H cluster. Here, we investigate the mechanistic basis of this observation by means of density functional theory. Unexpectedly, we find that the isolated H cluster shows a pathological catalytic activity for the formation of reactive oxygen species such as O(2)(-) and HO(2)(-). After protonation of O(2)(-), an OOH radical may coordinate to the Fe atoms of the cubane, whereas H(2)O(2) specifically reacts with the S atoms of the cubane-coordinating cysteine residues. Both pathways are accompanied by significant structural distortions that compromise cluster integrity and thus catalytic activity. These results explain the experimental observation that O(2)-induced inhibition is accompanied by distortions of the [Fe(4)S(4)] moiety and account for the irreversibility of this process.  相似文献   

9.
The mass-selected [(CO(2))(2)(H(2)O)(m)](-) cluster anions are studied using a combination of photoelectron imaging and photofragment mass spectroscopy at 355 nm. Photoelectron imaging studies are carried out on the mass-selected parent cluster anions in the m=2-6 size range; photofragmentation results are presented for m=3-11. While the photoelectron images suggest possible coexistence of the CO(2) (-)(H(2)O)(m)CO(2) and (O(2)CCO(2))(-)(H(2)O)(m) parent cluster structures, particularly for m=2 and 3, only the CO(2) (-) based clusters are both required and sufficient to explain all fragmentation pathways for m>/=3. Three types of anionic photofragments are observed: CO(2) (-)(H(2)O)(k), O(-)(H(2)O)(k), and CO(3) (-)(H(2)O)(k), k6) is attributed to hindrance from the H(2)O molecules.  相似文献   

10.
The vanadate anion in the presence of pyrazine-2-carboxylic acid (PCA [identical with] pcaH) efficiently catalyzes the oxidation of 2-propanol by hydrogen peroxide to give acetone. UV-vis spectroscopic monitoring of the reaction as well as the kinetics lead to the conclusion that the crucial step of the process is the monomolecular decomposition of a diperoxovanadium(V) complex containing the pca ligand to afford the peroxyl radical, HOO(.-) and a V(IV) derivative. The rate-limiting step in the overall process may not be this (rapid) decomposition itself but (prior to this step) the slow hydrogen transfer from a coordinated H2O2 molecule to the oxygen atom of a pca ligand at the vanadium center: "(pca)(O=)V...O2H2" --> "(pca)(HO-)V-OOH". The V(IV) derivative reacts with a new hydrogen peroxide molecule to generate the hydroxyl radical ("V(IV)" + H2O2 --> "V(V)" + HO(-) + HO(.-)), active in the activation of isopropanol: HO(.-) + Me2CH(OH) --> H2O + Me2C(.-)(OH). The reaction with an alkane, RH, in acetonitrile proceeds analogously, and in this case the hydroxyl radical abstracts a hydrogen atom from the alkane: HO(.-) + RH --> H2O + R(.-). These conclusions are in a good agreement with the results obtained by Bell and co-workers (Khaliullin, R. Z.; Bell, A. T.; Head-Gordon, M. J. Phys. Chem. B 2005, 109, 17984-17992) who recently carried out a density functional theory study of the mechanism of radical generation in the reagent under discussion in acetonitrile.  相似文献   

11.
The photosensitization mechanisms of urocanic acid (UA), the main skin chromophores of ultraviolet (UV) light, are investigated by means of theoretical calculations. The results indicate that the direct photooxidative damage to DNA bases by triplet state UA through electron transfer reaction is not favorable on thermodynamic grounds. However, UA can photogenerate various reactive oxygen species (ROS, e.g., (1)O(2), O(2)(-)) theoretically and the ROS-generating mechanisms are illustrated as follows. Firstly, the (1)O(2)-generating pathway involves direct energy transfer between triplet state UA and (3)O(2). Secondly, UA gives birth to O(2)(-) through two pathways: (i) direct electron transfer between triplet state UA and (3)O(2); (ii) electron transfer between anion radical of UA (generated through autoionization reactions) and (3)O(2).  相似文献   

12.
采用CCSD(T)/aug-cc-p VTZ//B3LYP/6-311+G(2df,2p)方法对n(H_2O)(n=0,1,2)参与HO_2+NO→HNO_3反应的微观机理和速率常数进行了研究.结果表明,由于水分子与HO_2形成的复合物(H_2O…HO_2,HO_2…H_2O)结合NO与水分子形成的复合物(NO…H_2O,ON…H_2O)的反应方式具有较高能垒和较低有效速率,其对HO_2+NO→HNO_3反应的影响远小于双体水(H_2O)2与HO_2(或NO)形成复合物然后再与另一分子反应物NO(或HO_2)的反应方式,因此n(H_2O)(n=1,2)催化HO_2+NO→HNO_3反应主要经历了HO_2…(H_2O)_n(n=1,2)+NO和NO…(H_2O)_n(n=1,2)+HO_22种反应类型.由于HO_2…(H_2O)_n(n=1,2)+NO反应的低能垒和高速率,HO_2…(H_2O)_n(n=1,2)+NO反应优于NO…(H_2O)_n(n=1,2)+HO_2反应.与此同时,由于计算温度范围内HO_2…H_2O+NO反应的有效速率常数比HO_2…(H_2O)2+NO反应对应的有效速率常数大了10~12数量级,可推测(H_2O)_n(n=1,2)催化HO_2+NO→HNO_3反应主要来自于单个水分子.此外,在216.7~298.6 K范围内水分子对HO_2+NO→HNO_3反应起显著的正催化作用,且随温度的升高有明显增大的趋势,在298.2 K时增强因子k'RW1/ktotal达到67.93%,表明在实际大气环境中水蒸气对HO_2+NO→HNO_3反应具有显著影响.  相似文献   

13.
Isomerization of N(2)O(4) and dimerization of NO(2) in thin water films on surfaces are believed to be key steps in the hydrolysis of NO(2), which generates HONO, a significant precursor to the OH free radical in lower atmosphere and high-energy materials. Born-Oppenheimer molecular dynamics simulations using the density functional theory are carried out for NO(2)(H(2)O)(m), m ≤ 4, and N(2)O(4)(H(2)O)(n) clusters, n ≤ 7, used to mimic the surface reaction, to investigate the mechanism around room temperature. The results are (i) the NO(2) dimerization and N(2)O(4) isomerization reactions occur via two possible pathways, the non-water-assisted and water-assisted mechanisms; (ii) the NO(2) dimerization in the presence of water yields either ONONO(2)(H(2)O)(m) or NO(3)(-)NO(+)(H(2)O)(m) clusters, but it is also possible to form the HNO(3)(NO(2)(-))(H(3)O(+))(H(2)O)(m-2) transition state to form HONO and HNO(3), directly; (iii) the N(2)O(4) isomerization yields the NO(3)(-)NO(+)(H(2)O)(n) cluster, but it does not hydrolyze faster than the NO(2)(+)NO(2)(-)(H(2)O)(n) hydrolysis to directly form the HONO and HNO(3). New insights for hydrolysis of oxides of nitrogen in and on thin water films on surfaces in the atmosphere are discussed.  相似文献   

14.
The constant ionization potential for hydrated sodium clusters Na(H2O)n just beyond n=4, as observed in photoionization experiments, has long been a puzzle in violation of the well-known (n+1)(-1/3) rule that governs the gradual transition in properties from clusters to the bulk. Based on first principles calculations, a link is identified between this puzzle and an important process in solution: the reorganization of the solvation structure after the removal of a charged particle. Na(H2O)n is a prototypical system with a solvated electron coexisting with a solvated sodium ion, and the cluster structure is determined by a balance among three factors: solute-solvent (Na+-H2O), solvent-solvent (H2O-H2O), and electron-solvent (OH{e}HO) interactions. Upon the removal of an electron by photoionization, extensive structural reorganization is induced to reorient OH{e}HO features in the neutral Na(H2O)n for better Na+-H2O and H2O-H2O interactions in the cationic Na+(H2O)n. The large amount of energy released, often reaching 1 eV or more, indicates that experimentally measured ion signals actually come from autoionization via vertical excitation to high Rydberg states below the vertical ionization potential, which induces extensive structural reorganization and the loss of a few solvent molecules. It provides a coherent explanation for all the peculiar features in the ionization experiments, not only for Na(H2O)n but also for Li(H2O)n and Cs(H2O)n. In addition, the contrast between Na(H2O)n and Na(NH3)n experiments is accounted for by the much smaller relaxation energy for Na(NH3)n, for which the structures and energetics are also elucidated.  相似文献   

15.
Statistical adiabatic channel model/classical trajectory (SACM/CT) calculations of the dissociation/recombination dynamics of hydrogen peroxide, H(2)O(2) <--> 2HO, have been performed on an ab initio potential energy surface by Kuhn, Rizzo, Luckhaus, Quack, and Suhm (J. Chem. Phys. 1999, 111, 2565). Specific rate constants k(E,J), thermal rate constants k(infinity)(T), and lifetime distributions are determined. After averaging over J, the derived k(E,J) are in quantitative agreement with non-exponential time-profiles of HO formation recorded after overtone excitation of H(2)O(2) near the dissociation threshold by Scherer and Zewail (J. Chem. Phys. 1987, 87, 97). The thermal high pressure rate constants for HO recombination agree with experimental data as well and can be represented by k(rec,infinity)/10(-10) cm(3) molecule(-1) s(-1) approximately [0.376 (298 K/T)(0.47) + 0.013 (T/298 K)(0.74)] over the range 60-1500 K. Non-statistical lifetime distributions are suggested not to have been of major relevance for the available experiment.  相似文献   

16.
Ab initio molecular orbital calculations have been employed to characterize the structure and bonding of the (HO2-H2O)+ radical cation system. Geometry optimization of this system was carried out using unrestricted density functional theory in conjunction with the BHHLYP functional and 6-311++G(2df,2p) as well as 6-311++G(3df,3p) basis sets, the second-order M?ller-Plesset perturbation (MP2) method with the 6-311++G(3df,3p) basis set, and the couple cluster (CCSD) method with the aug-cc-pVTZ basis set. The effect of spin multiplicity on the stability of the (HO2-H2O)+ system has been studied and also compared with that of oxygen. The calculated results suggest a proton-transferred hydrogen bond between HO2 and H2O in H3O3+ wherein a proton is partially transferred to H2O producing the O2...H3O+ structure. The basis set superposition error and zero-point energy corrected results indicate that the H3O3+ system is energetically more stable in the triplet state; however, the singlet state of H3O3+ is more stable with respect to its dissociation into H3O+ and singlet O2. Since the resulting proton-transferred hydrogen-bonded complex (O2...H3O+) consists of weakly bound molecular oxygen, it might have important implications in various chemical processes and aquatic life systems.  相似文献   

17.
Hydrated divalent magnesium and calcium clusters are used as nanocalorimeters to measure the internal energy deposited into size-selected clusters upon capture of a thermally generated electron. The infrared radiation emitted from the cell and vacuum chamber surfaces as well as from the heated cathode results in some activation of these clusters, but this activation is minimal. No measurable excitation due to inelastic collisions occurs with the low-energy electrons used under these conditions. Two different dissociation pathways are observed for the divalent clusters that capture an electron: loss of water molecules (Pathway I) and loss of an H atom and water molecules (Pathway II). For Ca(H(2)O)(n)(2+), Pathway I occurs exclusively for n >or= 30 whereas Pathway II occurs exclusively for n 相似文献   

18.
The electron capture dynamics of halocarbon and its water complex have been investigated by means of the full dimensional direct density functional theory molecular dynamics method in order to shed light on the mechanism of electron capture of a halocarbon adsorbed on the ice surface. The CF(2)Cl(2) molecule and a cyclic water trimer (H(2)O)(3) were used as halocarbon and water cluster, respectively. The dynamics calculation of CF(2)Cl(2) showed that both C-Cl bonds are largely elongated after the electron capture, while one of the Cl atoms is dissociated from CF(2)Cl(2) (-) as a Cl(-) ion. Almost all total available energy was transferred into the internal modes of the parent CF(2)Cl radical on the product state, while the relative translational energy of Cl(-) was significantly low due to the elongation of two C-Cl bonds. In the case of a halocarbon-water cluster system, the geometry optimization of neutral complex CF(2)Cl(2)(H(2)O)(3) showed that one of the Cl atoms interacts with n orbital of water molecules of trimer and the other Cl atom existed as a dangling Cl atom. After the electron capture, only one C-Cl bond (dangling Cl atom) was rapidly elongated, whereas the other C-Cl bond is silent during the reaction. The dangling Cl atom was directly dissociated from CF(2)Cl(2) (-)(H(2)O)(3) as Cl(-). The fast Cl(-) ion was generated from CF(2)Cl(2) (-)(H(2)O)(3) on the water cluster. The mechanism of the electron capture of halocarbon on water ice was discussed on the basis of the theoretical results.  相似文献   

19.
The reaction of nitrous acid with hydrogen peroxide leads to nitric acid as the only stable product. In the course of this reaction, peroxynitrous acid (ONOOH) and, in the presence of CO(2), a peroxynitrite-CO(2) adduct (ONOOCO(2)(-)) are intermediately formed. Both intermediates decompose to yield highly oxidizing radicals, which subsequently react with excess hydrogen peroxide to yield peroxynitric acid (O(2)NOOH) as a further intermediate. During these reactions, (15)N chemically induced dynamic nuclear polarization (CIDNP) effects are observed, the analysis of the pH dependency of which allows the elucidation of mechanistic details. The formation and decay of peroxynitric acid via free radicals NO(2)(*) and HOO(*) is demonstrated by the appearance of (15)N CIDNP leading to emission (E) in the (15)N NMR signal of O(2)NOOH during its formation and to enhanced absorption (A) during its decay reaction. Additionally, the (15)N NMR signal of the nitrate ion (NO(3)(-)) appears in emission at pH approximately 4.5. These observations are explained by proposing the intermediate formation of short-lived radical anions O(2)NOOH(*)(-) probably generated by electron transfer between peroxynitric acid and peroxynitrate anion, followed by decomposition of O(2)NOOH(*)(-) into NO(3)(-) and HO(*) and NO(2)(-) and HOO(*) radicals, respectively. The feasibility of such reactions is supported by quantum-chemical calculations at the CBS-Q level of theory including PCM solvation model corrections for aqueous solution. The release of free HO(*) radicals during decomposition of O(2)NOOH is supported by (13)C and (1)H NMR product studies of the reaction of preformed peroxynitric acid with [(13)C(2)]DMSO (to yield the typical "HO(*) products" methanesulfonic acid, methanol, and nitromethane) and by ESR spectroscopic detection of the HO(*) and CH(3)(*) radical adducts to the spin trap compound POBN in the absence and presence of isotopically labeled DMSO, respectively.  相似文献   

20.
Here we report ion mobility experiments and theoretical studies aimed at elucidating the identity of the acetylene dimer cation and its hydrated structures. The mobility measurement indicates the presence of more than one isomer for the C(4)H(4)(●+) ion in the cluster beam. The measured average collision cross section of the C(4)H(4)(●+) isomers in helium (38.9 ± 1 A?(2)) is consistent with the calculated cross sections of the four most stable covalent structures calculated for the C(4)H(4)(●+) ion [methylenecyclopropene (39.9 A?(2)), 1,2,3-butatriene (41.1 A?(2)), cyclobutadiene (38.6 A?(2)), and vinyl acetylene (41.1 A?(2))]. However, none of the single isomers is able to reproduce the experimental arrival time distribution of the C(4)H(4)(●+) ion. Combinations of cyclobutadiene and vinyl acetylene isomers show excellent agreement with the experimental mobility profile and the measured collision cross section. The fragment ions obtained by the dissociation of the C(4)H(4)(●+) ion are consistent with the cyclobutadiene structure in agreement with the vibrational predissociation spectrum of the acetylene dimer cation (C(2)H(2))(2)(●+) [R. A. Relph, J. C. Bopp, J. R. Roscioli, and M. A. Johnson, J. Chem. Phys. 131, 114305 (2009)]. The stepwise hydration experiments show that dissociative proton transfer reactions occur within the C(4)H(4)(●+)(H(2)O)(n) clusters with n ≥ 3 resulting in the formation of protonated water clusters. The measured binding energy of the C(4)H(4)(●+)H(2)O cluster, 38.7 ± 4 kJ/mol, is in excellent agreement with the G3(MP2) calculated binding energy of cyclobutadiene(●+)·H(2)O cluster (41 kJ/mol). The binding energies of the C(4)H(4)(●+)(H(2)O)(n) clusters change little from n = 1 to 5 (39-48 kJ/mol) suggesting the presence of multiple binding sites with comparable energies for the water-C(4)H(4)(●+) and water-water interactions. A significant entropy loss is measured for the addition of the fifth water molecule suggesting a structure with restrained water molecules, probably a cyclic water pentamer within the C(4)H(4)(●+)(H(2)O)(5) cluster. Consequently, a drop in the binding energy of the sixth water molecule is observed suggesting a structure in which the sixth water molecule interacts weakly with the C(4)H(4)(●+)(H(2)O)(5) cluster presumably consisting of a cyclobutadiene(●+) cation hydrogen bonded to a cyclic water pentamer. The combination of ion mobility, dissociation, and hydration experiments in conjunction with the theoretical calculations provides strong evidence that the (C(2)H(2))(2)(●+) ions are predominantly present as the cyclobutadiene cation with some contribution from the vinyl acetylene cation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号