首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Gangliosides have been suggested to play important roles in various functions such as adhesion, cell differentiation, growth control, and signaling. Mouse follicular development, ovulation, and luteinization during the estrous cycle are regulated by several hormones and cell-cell interactions. In addition, spermatogenesis in seminiferous tubules of adult testes is also regulated by several hormones, including follicle-stimulating hormone (FSH) and luteinizing hormone (LH) and cell-cell interactions. The regulation of these processes by hormones and cell-cell interactions provides evidence for the importance of surface membrane components, including gangliosides. During preimplantation embryo development, a mammalian embryo undergoes a series of cleavage divisions whereby a zygote is converted into a blastocyst that is sufficiently competent to be implanted in the ma ternal uterus and continue its development. Mouse embryonic stem (mES) cells are pluripotent cells derived from mouse embryo, specifically, from the inner cell mass of blastocysts. Differentiated neuronal cells are derived from mES cells through the formation of embryonic bodies (EBs). EBs recapitulate many aspects of lineage-specific differentiation and temporal and spatial gene expression patterns during early embryogenesis. Previous studies on ganglioside expression during mouse embryonic development (including during in vitro fertilization, ovulation, spermatogenesis, and embryogenesis) reported that gangliosides were expressed in both undifferentiated and differentiated (or differentiating) mES cells. In this review, we summarize some of the advances in our understanding of the functional roles of gangliosides during the stages of mouse embryonic development, including ovulation, spermatogenesis, and embryogenesis, focusing on undifferentiated and differentiated mES cells (neuronal cells).  相似文献   

2.
3.
Osteoarthritis is a common cause of functional deterioration in older adults and is an immense burden on the aging population. Altered chondrogenesis is the most important pathophysiological process involved in the development of osteoarthritis. However, the molecular mechanism underlying the regulation of chondrogenesis in patients with osteoarthritis requires further elucidation, particularly with respect to the role of microRNAs. MiR-21 expression in cartilage specimens was examined in 10 patients with knee osteoarthritis and 10 traumatic amputees. The effect of miR-21 on chondrogenesis was also investigated in a chondrocyte cell line. The effect of miR-21 on the expression of growth differentiation factor 5 (GDF-5) was further assessed by luciferase reporter assay and western blot. We found that endogenous miR-21 is upregulated in osteoarthritis patients, and overexpression of miR-21 could attenuate the process of chondrogenesis. Furthermore, we identified GDF-5 as the direct target of miR-21 during the regulation of chondrogenesis. Our data suggest that miR-21 has an important role in the pathogenesis of osteoarthritis and is a potential therapeutic target.  相似文献   

4.
5.
6.
Photodynamic therapy (PDT) is a light-based cancer therapy approach that has shown promising results in treating various malignancies. Growing evidence indicates that cancer stem cells (CSCs) are implicated in tumor recurrence, metastasis, and cancer therapy resistance in colorectal cancer (CRC); thus, targeting these cells can ameliorate the prognosis of affected patients. Based on our bioinformatics results, SOX2 overexpression is significantly associated with inferior disease-specific survival and worsened the progression-free interval of CRC patients. Our results demonstrate that zinc phthalocyanine (ZnPc)-PDT with 12 J/cm2 or 24 J/cm2 irradiation can substantially decrease tumor migration via downregulating MMP9 and ROCK1 and inhibit the clonogenicity of SW480 cells via downregulating CD44 and SOX2. Despite inhibiting clonogenicity, ZnPc-PDT with 12 J/cm2 irradiation fails to downregulate CD44 expression in SW480 cells. Our results indicate that ZnPc-PDT with 12 J/cm2 or 24 J/cm2 irradiation can substantially reduce the cell viability of SW480 cells and stimulate autophagy in the tumoral cells. Moreover, our results show that ZnPc-PDT with 12 J/cm2 or 24 J/cm2 irradiation can substantially arrest the cell cycle at the sub-G1 level, stimulate the intrinsic apoptosis pathway via upregulating caspase-3 and caspase-9 and downregulating Bcl-2. Indeed, our bioinformatics results show considerable interactions between the studied CSC-related genes with the studied migration- and apoptosis-related genes. Collectively, the current study highlights the potential role of ZnPc-PDT in inhibiting stemness and CRC development, which can ameliorate the prognosis of CRC patients.  相似文献   

7.
8.
9.
Curcumin is a well known natural polyphenol product isolated from the rhizome of the plant Curcuma longa, anti-inflammatory agent for arthritis by inhibiting synthesis of inflammatory prostaglandins. However, the mechanisms by which curcumin regulates the functions of chondroprogenitor, such as proliferation, precartilage condensation, cytoskeletal organization or overall chondrogenic behavior, are largely unknown. In the present report, we investigated the effects and signaling mechanism of curcumin on the regulation of chondrogenesis. Treating chick limb bud mesenchymal cells with curcumin suppressed chondrogenesis by stimulating apoptotic cell death. It also inhibited reorganization of the actin cytoskeleton into a cortical pattern concomitant with rounding of chondrogenic competent cells and down-regulation of integrin β1 and focal adhesion kinase (FAK) phosphorylation. Curcumin suppressed the phosphorylation of Akt leading to Akt inactivation. Activation of Akt by introducing a myristoylated, constitutively active form of Akt reversed the inhibitory actions of curcumin during chondrogenesis. In summary, for the first time, we describe biological properties of curcumin during chondrogenic differentiation of chick limb bud mesenchymal cells. Curcumin suppressed chondrogenesis by stimulating apoptotic cell death and down-regulating integrin-mediated reorganization of actin cytoskeleton via modulation of Akt signaling.  相似文献   

10.
11.
12.
We have developed a novel method to induce spontaneous hyaline cartilage regeneration in vivo for a large osteochondral defect by implanting a plug made from a double‐network hydrogel composed of poly(2‐acrylamido‐2‐methylpropanesulfonic acid) and poly(N,N′‐dimethylacrylamide) at the bottom of the defect, leaving the cavity vacant. In cells regenerated in the treated defect, type‐2 collagen, Aggrican, and SOX9 mRNAs were highly expressed and the regenerated matrix was rich in proteoglycan and type‐2 collagen at 4 weeks. This fact gave a significant modification to the commonly established concept that hyaline cartilage tissue cannot regenerate in vivo. This study prompted an innovative strategy in the field of joint surgery to repair an osteochondral defect using an advanced, high‐function hydrogel.

  相似文献   


13.
14.
15.
Recent widespread interest in the development of engineered tissue and organ replacement therapies has prompted demand for new approaches to immobilize exogenous components to natural collagen. Chemical coupling of synthetic moieties to amino acid side chains has been commonly practiced for such purposes; however, such coupling reactions are difficult to control on large proteins and are generally not conducive to modifying integrated collagen scaffolds that contain live cells and tissues. As an alternative to the conventional "covalent" modification method, we have developed a novel "physical" modification technique that is based on collagen's native ability to associate into a triple-helical molecular architecture. Here, we present a finding that collagen mimetic peptides (CMPs) of sequence -(Pro-Hyp-Gly)x- exhibit strong affinity to both native and gelatinized type I collagen under controlled thermal conditions. We also show that the cell adhesion characteristics of collagen can be readily altered by applying a poly(ethylene glycol)-CMP conjugate to a prefabricated collagen film.  相似文献   

16.
The inductive effects of increased osmolarity on chondrogenesis are well approved. However, the effects of the osmolyte agent invoked to induce hyperosmolarity are largely neglected. Herein, we scrutinized how hyperosmotic conditions acquired by addition of different osmolytes would impact chondrogenesis. We briefly assessed whether such conditions would differentially affect hypertrophy and angiogenesis during MSC chondrogenesis. Chondrogenic and hypertrophic marker expression along with VEGF secretion during adipose-derived (AD)-MSC chondrogenesis under three osmolarity levels (350, 450, and 550 mOsm) using three different osmolytes (NaCl, sorbitol, and PEG) were assessed. MTT assay, qRT-PCR, immunocytochemistry, Alcian Blue staining, ELISA, and ALP assays proved osmolyte-type dependent effects of hyperosmolarity on chondrogenesis, hypertrophy, and angiogenesis. At same osmolarity level, PEG had least cytotoxic/cytostatic effect and most prohibitive effects on angiogenesis. As expected, all hyperosmolar conditions led to enhanced chondrogenesis with slightly varying degrees. PEG and sorbitol had higher chondro-promotive and hypertrophy-suppressive effects compared to NaCl, while NaCl had exacerbated hypertrophy. We observed that TonEBP was involved in osmoadaptation of all treatments in varying degrees. Of importance, we highlighted differential effects of hyperosmolarity obtained by different osmolytes on the efficacy of chondrogenesis and more remarkably on the induction/suppression of cartilage pathologic markers. Our study underlies the need for a more vigilant exploitation of physicobiochemical inducers in order to maximize chondrogenesis while restraining unwanted hypertrophy and angiogenesis.  相似文献   

17.
Angiogenesis, a biologic process whereby endothelial cells divide and migrate to form new blood vessels, is a key step in tumor growth, invasion, and metastasis. In the present study, we investigated the differences in angioarchitecture between two different tumors induced by cloned cell lines (MT-8 and MT-9), derived from a transplantable rat malignant fibrous histiocytoma, by scanning electron microscopy of vascular corrosion casts. During a 3-week observation period after implantation, the growth of MT-8 tumors appeared to be faster than that of MT-9 tumors. Histologically, MT-8 tumors were of the uniformly undifferentiated sarcoma type arranged in characteristic organoid structures, and MT-9 tumors showed a storiform growth pattern. In MT-8 tumors, neovascularization occurred by sprouting at postimplantation (PI) week 1, and the newly formed capillaries gradually became more tortuous. In MT-9 tumors, at PI week 1, the corrosion casts of newly formed capillaries mainly showed a wavy course but no finger-like outgrowths of capillaries were seen. At PI weeks 2 and 3, the sprouting was seen specifically in MT-9 tumors, forming basket-like structures and glomeruloid structures of capillaries. These results indicate that angiogenesis or angioarchitecture of MT-8 tumors is different from that of MT-9 tumors, depending on the differences in their tumor histology and by the features like absence or presence of basket-like structures and glomeruloid structures of capillaries.  相似文献   

18.
19.
The present study presents the regeneration of cartilage in hybrid scaffolds comprising polyethylene oxide (PEO) and chitosan with surface CDPGYIGSR. This surface peptide was grafted via crosslinking onto the scaffolds. The pores in the scaffolds were interconnected and uniformly distributed with an average diameter about 200-250 μm. A high weight percentage of PEO in the matrix yielded a rugged topography of the pore surfaces. The adhesion of bovine knee chondrocytes (BKCs) in the peptide-grafted scaffolds was more efficient than that in the peptide-free scaffolds. In addition, the constructs with surface peptide could stimulate chondrogenesis with enhanced quantities of BKCs, glycosaminoglycans (GAGs), and collagen over cultivation. The histological staining of the proliferated BKCs and secreted GAGs indicated that the surface peptide favored the production of neocartilage in the constructs. Moreover, the immunochemical staining against type II collagen demonstrated the maintenance of phenotypic chondeocytes on the peptide-grafted surfaces. The peptide-grafted PEO/chitosan scaffolds can be applied to the treatment for injured cartilage in preclinical trials.  相似文献   

20.
Pancreatic carcinoma still represents one of the most lethal malignant diseases in the world although some progress has been made in treating the disease in the past decades. Current multi-agent treatment options have improved the overall survival of patients, however, more effective treatment strategies are still needed. In this paper we have characterized the anticancer potential of coumarin-palladium(II) complex against pancreatic carcinoma cells. Cells viability, colony formation and migratory potential of pancreatic carcinoma cells were assessed in vitro, followed by evaluation of apoptosis induction and in vivo testing on zebrafish. Presented results showed remarkable reduction in pancreatic carcinoma cells growth both in vitro and in vivo, being effective at micromolar concentrations (0.5 μM). Treatments induced apoptosis, increased BAX/BCL-2 ratio and suppressed the expression of SOX9 and SOX18, genes shown to be significantly up-regulated in pancreatic ductal adenocarcinoma. Importantly, treatments of the zebrafish-pancreatic adenocarcinoma xenografts resulted in significant reduction in tumor mass, without provoking any adverse toxic effects including hepatotoxicity. Presented results indicate the great potential of the tested compound and the perspective of its further development towards pancreatic cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号