首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Binding states and sticking coefficients of CO and H2 on clean and oxide covered (110) planes of Pt are examined using flash desorption mass spectrometry to characterize binding states and Auger electron spectroscopy (AES) to characterize oxide densities. It is found that on the oxide both adsorbates have new binding states with significantly higher binding energies than on the clean surface. For H2 the binding states associated with the clean surface are also shifted to higher energies as the oxide coverage increases. The oxide state for H2 desorbs with first order kinetics, and isotope exchange experiments are used to examine exchange between isotopes and between states. The initial sticking coefficients for CO are 1.0 and 0.85 on clean and oxidized surfaces, and the initial sticking coefficient for H2 increases from 0.15 on the clean surface to 0.28 on the oxidized surface. Enhanced bonding on the oxide is interpreted in terms of models involving microfacets, electronic structure alteration, and compound formation.  相似文献   

2.
《Applied Surface Science》1988,31(1):163-172
Isosteric heats of adsorption ΔHad of CO and sticking coefficients S for CO and H2 on Rh(111) are determined by laser-induced thermal desorption (LITD) in which a pulsed laser beam is focused onto the surface, and rapid local heating yields a desorption signal that is proportional to the adsorbate coverage θ. ΔHad for CO falls from 32.0±2 kcal/mol at low coverage to 14 kcal/mol at saturation, and the desorption pre-exponential factor vd decreases from 1014±0.5 to 1010 s-1. ΔHad, vd, and S of CO all decline sharply above θ = 0.2, corresponding to the occupation of a second binding state. Sticking coefficients for CO and hydrogen indicate precursor intermediates in adsorption.  相似文献   

3.
A study of the adsorption/desorption behavior of CO, H2O, CO2 and H2 on Ni(110)(4 × 5)-C and Ni(110)-graphite was made in order to assess the importance of desorption as a rate-limiting step for the decomposition of formic acid and to identify available reaction channels for the decomposition. The carbide surface adsorbed CO and H2O in amounts comparable to the clean surface, whereas this surface, unlike clean Ni(110), did not appreciably adsorb H2. The binding energy of CO on the carbide was coverage sensitive, decreasing from 21 to 12 kcalmol as the CO coverage approached 1.1 × 1015 molecules cm?2 at 200K. The initial sticking probability and maximum coverage of CO on the carbide surface were close to that observed for clean Ni(110). The amount of H2, CO, CO2 and H2O adsorbed on the graphitized surface was insignificant relative to the clean surface. The kinetics of adsorption/desorption of the states observed are discussed.  相似文献   

4.
The adsorption and coadsorption of CO and H2 have been studied by means of thermal desorption (TD) and electron stimulated desorption (ESD) at temperatures ranging from 250 to 400 K. Three CO TD states, labelled as β2, β1, and β0 were detected after adsorption at 250 K. The population of β2 and β1 states which are the only ones observed upon adsorption at temperatures higher than 300 K was found to depend on adsorption temperature. The correlation between the binding states in the TD spectra and the ESD O+ and CO+ ions observed was discussed. Hydrogen is dissociatively adsorbed on Pd(111) and no ESD H+ signal was recorded following H2 adsorption on a clean Pd surface. The presence of CO was found to cause an appearance of a H+ ESD signal, a decrease of hydrogen surface population and an arisement of a broad H2 TD peak at about 450 K. An apparent influence of hydrogen on CO adsorption was detected at high hydrogen precoverages alone, leading to a decrease in the CO sticking coefficient and the relative population of CO β2 state. The coadsorption results were interpreted assuming mutual interaction between CO and H at low and medium CO coverages, the “cooperative” species being responsible for the H+ ESD signal. Besides, the presence of CO was proved to favour hydrogen penetration into the bulk even at high CO coverage when H atoms were completely displaced from the surface.  相似文献   

5.
The interactions between a molecular beam of SiO(g) and a clean and an oxidized tungsten surface were examined in the surface temperature range 600 to 1700 K by mass spectrometrically determined sticking probabilities, by flash desorption mass spectrometry (FDMS) and by Auger electron spectroscopy (AES). The sticking probability, S, of SiO has been determined as a function of coverage and of surface temperature for the clean and the oxidized tungsten surface. Over the temperature range studied and at zero coverage S = 1.0 and 0.88 for the clean and oxidized tungsten surfaces respectively. The results are consistent with both FDMS and AES. For coverage up to one monolayer there is one major adsorption state of SiO on the clean tungsten surface. FDMS shows that Tm = constant (Tm is the surface temperature at which the desorption rate is maximum) and that desorption from this state is described by a simple first order desorption process with activation energy, Ed = 85.3 kcal mole?1 and pre-exponential factor, ν = 2.1 × 1014 sec?1. AES shows that the 92 eV peak characteristic of silicon dominates. In contrast on the oxidized tungsten surface, Tm shifts to higher temperatures with increasing coverage. The data indicate a first order desorption process with a coverage dependent activation energy. At low coverage (θ ? 0.14) there is an adsorption state with Ed = 120 kcal mole?1 and ν = 7.6 × 1019, while at θ = 1.0, Ed = 141 kcal mole?1. This variation is interpreted as due to complex formation on the surface. AES shows that on oxidized tungsten, in contrast to clean tungsten, the dominant peaks occur at 64 and 78 eV, and these peaks are characteristic of higher oxidation states of silicon. Thus, it is concluded that SiO exists in different binding states on clean and oxidized tungsten surfaces.  相似文献   

6.
C.S. Ko  R.J. Gorte 《Surface science》1985,155(1):296-312
The interactions between oxide support materials and Pt have been studied by incorporating silica, alumina, titania, and niobia into the surface of a clean Pt foil. Auger electron spectroscopy (AES) and temperature-programmed desorption (TPD) of CO and H2 were used for surface characterization. For all of these oxides, TPD indicated no change in the adsorption properties of CO and H2. Peak temperatures were unaffected by the presence of oxide impurities. For silica and alumina, AES results indicated that suboxides could be formed after oxidation at 400 and 800 K respectively. Al2O3 and SiO2 were formed at higher temperatures. Relatively large quantities of these oxides were required to substantially decrease the saturation coverages of CO and H2, indicating that these oxides probably form clusters on the metal surface. For titania and niobia, AES indicated that these oxides dissolved into the Pt above 1300 K, but segregated back to the surface below 500 K. These segregated layers cover the Pt evenly and both oxides completely suppress H2 and CO adsorption at an oxygen coverage of 1 × 1015/cm2. These results are used to discuss the possible reasons for differences in the catalytic properties of Pt on these four oxide supports.  相似文献   

7.
Y. Zhu  L.D. Schmidt 《Surface science》1983,129(1):107-122
Temperature programmed desorption (TPD) of CO is used to determine surface areas, binding states, and changes upon oxidation for 10–1000 Å particles of Pt, Rh, and Pt-Rh alloy on amorphous SiO2. A low area sample configuration is used to obtain rapid and uniform heating and cooling in an ultra-high vacuum system. It is shown that both metals exhibit a higher CO binding state for small particles, but, as particle size increases, this state disappears and is replaced by a more weakly bound state. These states are suggested to be associated with (111) and higher surface free energy planes on these surfaces, heating Rh above 700 K in O2 at 10?6 Torr produces an oxide on which the CO saturation coverage is at least a factor of 10 lower than on the reduced surface. For Pt, oxidation produces only a small decrease in CO coverage, although the binding energy of CO increases on the oxygen treated surface. The difference in desorption temperatures for CO on Pt and Rh is consistent with previous experiments which show that an oxidation-reduction cycle produces a surface layer which is enriched in Rh and that the oxidized alloy contains no Pt atoms.  相似文献   

8.
The adsorption and desorption of O2 on a Pt(111) surface have been studied using molecular beam/surface scattering techniques, in combination with AES and LEED for surface characterization. Dissociative adsorption occurs with an initial sticking probability which decreases from 0.06 at 300 K to 0.025 at 600 K. These results indicate that adsorption occurs through a weakly-held state, which is also supported by a diffuse fraction seen in the angular distribution of scattered O2 flux. Predominately specular scattering, however, indicates that failure to stick is largely related to failure to accommodate in the molecular adsorption state. Thermal desorption results can be fit by a desorption rate constant with pre-exponential νd = 2.4 × 10?2 cm2 s?1 and activation energy ED which decreases from 51 to 42 kcal/mole?1 with increasing coverage. A forward peaking of the angular distribution of desorbing O2 flux suggests that part of the adsorbed oxygen atoms combine and are ejected from the surface without fully accomodating in the molecular adsorption state. A slight dependance of the dissociative sticking probability upon the angle of beam incidence further supports this contention.  相似文献   

9.
The total uptake of CO, its adsorption kinetics and its desorption kinetics from clean and partially sulfur covered surfaces of the basal plane of ruthenium have been investigated. The method of desorption rate isotherms applied to the CO flash desorption spectra from these surfaces was used to evaluate the coverage dependence of the binding energy of CO as well as the effect of various levels of sulfur on this binding energy. Below a total surface concentration of 1 adsorbate atom per 3 surface Ru atoms, the binding energy and sticking probability of CO on the clean and sulfur covered surfaces are the same. Above this concentration of total adsorbates, the adsorption kinetics is the same on all surfaces studied, the binding energy decreases linearly with CO coverage while the magnitude of the decrease increases with sulfur coverage. The total uptake of CO depends on the amount of preadsorbed sulfur. At low coverages of sulfur, total CO uptake is effected by the excluded volume of sulfur. At higher coverages of sulfur (approaching 12 the maximum sulfur concentration on the clean surface) the site requirements of sulfur limits the amount of CO that can adsorb on the remaining surface, to the quantity of 1 adsorbate atom per 2 Ru atoms.  相似文献   

10.
11.
The adsorption of CO on Rh(111) has been studied by thermal desorption mass spectrometry and low-energy electron diffraction (LEED). At temperatures below 180 K, CO adsorbs via a mobile precursor mechanism with sticking coefficient near unity. The activation energy for first-order CO desorption is 31.6 kcal/mole (νd = 1013.6s?1) in the limit of zero coverage.As CO coverage increases, a (√3 ×√3)R30u overlayer is produced and then destroyed with subsequent formation of an overlayer yielding a (2 × 2) LEED pattern in the full coverage limit. These LEED observations allow the absolute assignment of the full CO coverage as 0.75 CO molecules per surface Rh atom. The limiting LEED behavior suggests that at full CO coverage two CO binding states are present together.  相似文献   

12.
Adsorption of NO and O2 on Rh(111) has been studied by TPD and XPS. Both gases adsorb molecularly at 120 K. At low coverages (θNO < 0.3) NO dissociates completely upon heating to form N2 and O2 which have peak desorption temperatures at 710 and 1310 K., respectively. At higher NO coverages NO desorbs at 455 K and a new N2 state obeying first order kinetics appears at 470 K. At saturation, 55% of the adsorbed NO decomposes. Preadsorbed oxygen inhibits NO decomposition and produces new N2 and NO desorption states, both at 400 K. The saturation coverage of NO on Rh(111) is approximately 0.67 of the surface atom density. Oxygen on Rh(111) has two strongly bound states with peak temperatures of 840 and 1125 K with a saturation coverage ratio of 1:2. Desorption parameters for the 1125 peak vary strongly with coverage and, assuming second-order kinetics, yield an activation energy of 85 ± 5 kcalmol and a pre-exponential factor of 2.0 cm2 s?1 in the limit of zero coverage. A molecular state desorbing at 150 K and the 840 K state fill concurrently. The saturation coverage of atomic oxygen on Rh(111) is approximately 0.83 times the surface atom density. The behavior of NO on Rh and Pt low index planes is compared.  相似文献   

13.
Measurements of both the absolute sticking probability near normal incidence and the coverage of H2 adsorbed on W(100) at ~ 300K have been made using a precision gas dosing system; a known fraction of the molecules entering the vacuum chamber struck the sample crystal before reaching a mass spectrometer detector. The initial sticking probability S0 for H2/W(100) is 0.51 ± 0.03; the hydrogen coverage extrapolated to S = 0 is 2.0 × 1015 atoms cm?2. The initial sticking probability S0 for D2/W(100) is 0.57 ± 0.03; the isotope effect for sticking probability is smaller than previously reported. Electron stimulated desorption (ESD) studies reveal that the low coverage β2 hydrogen state on W(100) yields H+ ions upon bombardment by 100 eV electrons; the ion desorption cross section is ~ 1.8 × 10?23 cm2. The H+ ion cross section at saturation hydrogen coverage when the β1 state is fully populated is ? 10?25 cm2. An isotope effect in electron stimulated desorption of H+ and D+ has been found. The H+ ion yield is ? 100 × greater than the D+ ion yield, in agreement with theory.  相似文献   

14.
The chemisorption of CO on Co(0001) and on a polycrystalline specimen has been studied by LEED, Auger spectroscopy, and thermal desorption measurements. Annealing of the polycrystal was found to result in a surface dominated by crystallites of (0001) orientation in the surface plane, along with a few (101&#x0304;2) oriented crystallites. CO adsorbs on the clean surface at 300 K with an initial sticking probability of 0.9 and the system follows precursor state kinetics. The saturation coverage under UHV conditions corresponds to a well-ordered (√3 × √3)R30° structure; with PCO>5 × 10-9 a uniform compression of the adlayer takes place and a (√7 × √7)R19.2° structure begins to form. Models are proposed for these two ordered phases which are in agreement with the observed relative coverage data and the appearance of the corresponding desorption spectra. The desorption enthalpy of CO at low coverages is 103 ± 8 kJmol-1, and a fairly sharp fall in this enthalpy occurs for coverages >13. In many respects, the system's behaviour closely resembles that of Ni(111)-CO. Oxygen contamination leads to the appearance of a strongly adsorbed CO state with a desorption enthalpy of ~170 kJmol-1. This is reminiscent of a strongly adsorbed non-dissociated state of CO on Ru(101&#x0304;1) which occurs under similar conditions.  相似文献   

15.
The adsorption of hydrogen on Pt (100) was investigated by utilizing LEED, Auger electron spectroscopy and flash desorption mass spectrometry. No new LEED structures were found during the adsorption of hydrogen. One desorption peak was detected by flash desorption with a desorption maximum at 160 °C. Quantitative evaluation of the flash desorption spectra yields a saturation coverage of 4.6 × 1014 atoms/cm2 at room temperature with an initial sticking probability of 0.17. Second order desorption kinetics was observed and a desorption energy of 15–16 kcal/mole has been deduced. The shapes of the flash desorption spectra are discussed in terms of lateral interactions in the adsorbate and of the existence of two substates at the surface. The reaction between hydrogen and oxygen on Pt (100) has been investigated by monitoring the reaction product H2O in a mass spectrometer. The temperature dependence of the reaction proved to be complex and different reaction mechanisms might be dominant at different temperatures. Oxygen excess in the gas phase inhibits the reaction by blocking reactive surface sites. At least two adsorption states of H2O have to be considered on Pt (100). Desorption from the prevailing low energy state occurs below room temperature. Flash desorption spectra of strongly bound H2O coadsorbed with hydrogen and oxygen have been obtained with desorption maxima at 190 °C and 340 °C.  相似文献   

16.
At 300 K oxygen chemisorbs on Ag(331) with a low sticking probability, and the surface eventually facets to form a (110)?(2 × 1) O structure with ΔΦ = +0.7 eV. This facetting is completely reversible upon O2 desorption at ~570 K. The electron impact properties of the adlayer, together with the LEED and desorption data, suggest that the transition from the (110) facetted surface to the (331) surface occurs at an oxygen coverage of about two-thirds the saturation value. Chemisorbed oxygen reacts rapidly with gaseous CO at 300 K, the reaction probability per impinging CO molecule being ~0.1. At 300 K chlorine adsorbs via a mobile precursor state and with a sticking probability of unity. The surface saturates to form a (6 × 1) structure with ΔΦ = +1.6 eV. This is interpreted in terms of a buckled close-packed layer of Cl atoms whose interatomic spacing is similar to those for Cl overlayers on Ag(111) and Ag(100). Desorption occurs exclusively as Cl atoms with Ed ~ 213 kJ mol?1; a comparison of the Auger, ΔΦ, and desorption data suggests that the Cl adlayer undergoes significant depolarisation at high coverages. The interaction of chlorine with the oxygen predosed surface, and the converse oxygen-chlorine reaction are examined.  相似文献   

17.
The hydrogenation of ethylene on Ni(1 0 0) surface has been studied by TDS. The decrease in the bonding energy with increasing coverage is revealed for both of adsorbed hydrogen and ethylene by the shift of desorption to lower temperatures. Ethane formation is only observed on the preadsorbed hydrogen coverage exceeding 0.5 monolayer (ML), coupled with the growth of H2 shoulder peak at lower temperatures. Further increase of H coverage to saturation reduces the bonding energy of subsequently adsorbed ethylene by 15 kJ/mol and decreases the saturation coverage of ethylene to about one-third on the clean surface. This leads to the shift of ethane desorption from 250 to 220 K and an appearance of additional ethane peak at 180 K. The latter ethane formation coincides with the hydrogenation of surface ethyl species derived from ethyl iodide as a precursor. It indicates that the rate of ethyl formation on the surface would be comparable to that of subsequent hydrogen addition to the surface ethyl species in the hydrogenation of ethylene when the preadsorbed hydrogen coverage approaches 1.0 ML.  相似文献   

18.
The kinetics of O2 adsorption on a clean Pt(111) surface were investigated in the temperature range 214–400°C. The oxygen coverage was measured by CO titration as well as Auger electron spectroscopy both of which show the same dependence on O2 exposure. The initial sticking coefficient on clean Pt(111) is 0.08–0.10 and decreases exponentially with increasing oxygen coverage. For θ > 0.23 a (2 × 2)-O LEED pattern was observed. The highest oxygen coverage obtained was approximately 0.45. A theoretical model was proposed which correlates the coverage dependence of the sticking coefficient with adsorbate interactions in the chemisorbed state. These interactions cause a coverage dependent activation energy of adsorption assuming the existence of a precursor state. Experiments dealing with the effect of carbon contamination on the sticking coefficient showed that the initial sticking coefficient decreases with increasing carbon coverage.  相似文献   

19.
We have used flash desorption mass spectroscopy to study the adsorption and desorption of H2 and CO from clean titanium at room temperature. CO flash desorption occurs predominantly from a low temperature state whose binding energy is 20.3 kcal/mole. H2 flash desorption is complex. Only one peak is observed; it is broader than flash desorption spectra normally corresponding to first or second order kinetics. The shift in the peak temperature to lower values with increasing coverage has been analysed using the isothermal desorption rate technique. The apparent order of H2 desorption is 1.5 and is independent of temperature from 888 to 1077 K. The activation energy is 21 kcal/mole. These results will be discussed in terms of absorption of H2 into titanium and thermal decomposition of a titanium hydride compound.  相似文献   

20.
Using polarization-modulated ellipsometry to monitor adsorbate coverage in-situ, we studied the activated adsorption of filament-heated molecular hydrogen on Cu(111) and subsequent isothermal desorption of hydrogen adatoms. The adsorption is characterized by a zeroth-order kinetic with a constant sticking probability of S0=0.0062 up to θ=0.25, followed by a Langmuir kinetic until the saturation coverage θs=0.5 is reached. The desorption follows a second-order kinetic with an activation energy of 0.63 eV and a pre-exponential factor of 1×109 /s. A pre-adsorbed monolayer of Xe atoms on Cu(111), with a desorption activation energy of 0.25 eV and a pre-exponential factor of 8×1014 /s, efficiently blocks the subsequent adsorption of hot molecular hydrogen, making physisorbedXe useful as templates for spatial patterning of hydrogen adatom density on Cu(111). PACS 68.43.Jk; 78.68.+m; 81.15.-z; 82.40.Np  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号