首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultraviolet photoelectron spectroscopy (UPS) has been used to study the chemisorption of CO, O2, and H2 on platinum. Three single crystal surfaces ((111), 6(111) × (100), and 6(111) × (111)) and two polycrystalline surfaces were studied. These studies yielded three important results. First, the most dominant change in the Pt valence band upon gas adsorption was a decrease in the height of the peak immediately below the Fermi level. This decrease was nearly identical for all three gases studied. Second, CO adsorption resulted in the formation of a resonance state ~8 eV below the Fermi level which was attributed to CO molecular orbitals. In contrast, no dominant resonance states were observed for adsorbed O or H. The lack of an O resonance state on platinum is in contrast to the results observed for O adsorbed on Fe and Ni and suggests important differences between the OPt chemisorption bond and the OFe and ONi chemisorption bonds. Finally, adsorption of CO at steps or defects led to a decrease in work function while its adsorption on terraces led to an increase in work function. For H, adsorption at steps led to an increase in work function while adsorption on terraces led to a decrease in work function. The adsorption of O led to an increase in work function on all of the surfaces studied.  相似文献   

2.
《Surface science》1986,172(1):71-80
The adsorption of CO on small Pt particles supported on alumina was studied using temperature programmed desorption (TPD). Samples were prepared by vapor deposition of Pt onto a flat substrate in ultra high vacuum. Metal coverages were reproducibly obtained using a film thickness monitor which was calibrated with Auger electron spectroscopy (AES). AES results indicated that Pt grew in a layer-by-layer manner on alumina at both 90 and 300 K and that these metal films aggregated into particles when heated above 650 K in vacuum. The average particle size could be estimated from the amount of CO desorbing in TPD and from the metal coverage and could be varied from 1.1 nm up to a continuous film. For the smallest particles, CO desorbed in a single state at 510 K. For larger particles, a second desorption state at 400 K was also observed. Since the desorption of CO occurs at similar temperatures on single crystals of Pt, these results indicate that the adsorption properties for CO on small particles of Pt on alumina are very similar to those for CO on bulk Pt. The change in the relative populations of the two desorption states with increasing particle size is interpreted as evidence for the formation of (111)-type facets on the larger particles.  相似文献   

3.
The various contributions to the adsorption energy of CO such as steric repulsion, σ bonding and π backbonding, are studied as a function of CO-cluster distance, C-O distance, adsorption site and cluster geometry. At the hollow site a double minimum is found in the adsorption energy as a function of CO-cluster distance. The effect of adsorption on the electronic structure of CO is large, in particular at the equilibrium distance close to the surface. Consequences for the C-O stretch frequency, and for the possibility of CO dissociation at the surface, are investigated.  相似文献   

4.
The adsorption of CO on Pt(111) between 85K and 300K has been studied by infrared-reflection-absorption spectroscopy together with TPD and LEED. The intensity of the absorption band due to the CO stretch of the linear species shows a maximum at the formation of the (√3 × √3)R30° LEED pattern followed by a minimum at the c(4×2) structure during the adsorption of CO at low temperatures (150K). The absorption band due to the C-O stretch of the bridging species appears only after the formation of the (√3 × √3)R30° pattern and reaches maximum intensity at the c(4×2) structure. Adsorption of CO to higher coverages (corresponding to the compression structures) broadens and shifts this absorption band. At higher temperatures (150K) a third peak is observed at 40cm−1 below the peak due to the bridging species and is attributed to adsorption in the three-fold sites. At 300K both peaks in this region are very broad. The intensity data differs from that measured with EELS (ref.1) and favors a “faultline” structure of the type proposed by Avery (ref.2). Together with the additional information from bandwidths it is possible to distinguish between the various structural models. The results obtained here may also be important in explaining data from other systems such as CO/Cu.  相似文献   

5.
The potential energy and surface dipole were calculated as a function of the geometry of the coadsorbed systems using the cluster method and theoretical oscillation frequencies and work function changes were compared with experiment. It was found that the K fills unoccupied Pt 5d states and reduces the local polarizability of the metal. The H2O molecule binds to the K atom, such that the H atoms point towards the surface inducing an increase in the work function. For the CO molecule a charge transfer (KCO) through the surface stabilizes the bond and induces a change of adsorption place (on-topbridge). The K increases the tendency to H2 dissociation because of the local decrease of the work function. Zero-point energy effects add important dynamical features to the electronic H2- surface interaction. Three examples for the Pt(111)-H2 system are presented: (i) A virtual attractive potential well produced by the softening of the H-H bond near the surface, (ii) a virtual potential barrier for dissociation due to the hindering of molecular rotations at the surface, and (iii) a change in the apparent surface temperature in H2 desorption processes.  相似文献   

6.
The Thermal Desorption or Temperature Programmed Desorption (TPD) technique has been used for the study of oxygen adsorption on Pt, Ag and Au catalyst films deposited on YSZ. The catalyst film was deposited on the one side of the YSZ specimen while on the other side gold counter and reference electrodes were deposited, constructing a three-electrode electrochemical cell similar to those used in Electrochemical Promotion studies. Oxygen adsorption has been carried out either by exposing the samples to gaseous oxygen (gas phase adsorption) or by the application of a constant current between the catalyst/working electrode and the counter electrode (electrochemical adsorption) or by mixed gas phase and electrochemical adsorption. Oxygen adsorption was carried out at temperatures between 200 and 480 °C. After exposure to gaseous oxygen, normal adsorbed atomic oxygen species have been observed on Pt and Ag surfaces while there was no detectable amount of adsorbed oxygen on Au. Electrochemical O2− pumping to Pt, Ag and Au catalyst films creates strongly bonded “backspillover” anionic oxygen, along with the more weakly bonded atomic oxygen. Electrochemical O2− pumping to Pt, Ag and Au catalyst films in presence of preadsorbed oxygen creates strongly bonded “backspillover” anionic oxygen, with a concomitant pronounced lowering of the Tp of the more weakly bound preadsorbed atomic oxygen. The two oxygen species co-exist on the surface. The activation energy for oxygen desorption or, equivalently, the binding strength of adsorbed oxygen was found to decrease linearly with increasing catalyst potential, for all three metal electrodes. Paper presented at the 4th Euroconference on Solid State Ionics, Renvyle, Galway, Ireland Sept. 13–19, 1997  相似文献   

7.
The effect of electron beam monitored gas adsorption on the clean Si surface is studied using Auger electron spectroscopy. It is shown that the beam affects the AES adsorption signal of CO and O2 on Si by dissociating the adsorbed molecules on the surface and subsequently promoting diffusion of atomic oxygen into the bulk. A qualitative explanation of the adsorption data is presented and the initial sticking probability of O2 on Si (111) surface is estimated to be S0 = 0.21.  相似文献   

8.
We have studied desorption of 13CO and H2O and desorption and reaction of coadsorbed, 13CO and H2O on Au(310). From the clean surface, CO desorbs mainly in, two peaks centered near 140 and 200 K. A complete analysis of desorption spectra, yields average binding energies of 21 ± 2 and 37 ± 4 kJ/mol, respectively. Additional desorption states are observed near 95 K and 110 K. Post-adsorption of H2O displaces part of CO pre-adsorbed at step sites, but does not lead to CO oxidation or significant shifts in binding energies. However, in combination with electron irradiation, 13CO2 is formed during H2O desorption. Results suggest that electron-induced decomposition products of H2O are sheltered by hydration from direct reaction with CO.  相似文献   

9.
C.S. Ko  R.J. Gorte 《Surface science》1985,155(1):296-312
The interactions between oxide support materials and Pt have been studied by incorporating silica, alumina, titania, and niobia into the surface of a clean Pt foil. Auger electron spectroscopy (AES) and temperature-programmed desorption (TPD) of CO and H2 were used for surface characterization. For all of these oxides, TPD indicated no change in the adsorption properties of CO and H2. Peak temperatures were unaffected by the presence of oxide impurities. For silica and alumina, AES results indicated that suboxides could be formed after oxidation at 400 and 800 K respectively. Al2O3 and SiO2 were formed at higher temperatures. Relatively large quantities of these oxides were required to substantially decrease the saturation coverages of CO and H2, indicating that these oxides probably form clusters on the metal surface. For titania and niobia, AES indicated that these oxides dissolved into the Pt above 1300 K, but segregated back to the surface below 500 K. These segregated layers cover the Pt evenly and both oxides completely suppress H2 and CO adsorption at an oxygen coverage of 1 × 1015/cm2. These results are used to discuss the possible reasons for differences in the catalytic properties of Pt on these four oxide supports.  相似文献   

10.
The molecular photoelectron spectra of gaseous N2, CO, C2H4 and O2 were obtained using yttrium Mζ X-rays (132.3 eV). Comparison with spectra taken with MgKα12 X-rays (1253.6 eV) showed the molecular orbitals derived from atomic 2p orbitals to be emphasized in the YMζ spectra. Orbital compositions were confirmed in N2 and CO, and the presence of several peaks was either better established or detected for the first time (e.g., a 2Πu state at 23.5 eV in O2+) in C2H4 and O2. The relative cross-section predictions of Rabalais et al. were tested by these spectra. The theoretical values, which were based on ground-state wavefunctions and plane-wave (PW) or OPW continuum states, were found to agree qualitatively with experiment, establishing that this level of theory has diagnostic value. Quantitative agreement is lacking, however. The potential application of 132.3 eV X-rays to the study of photoemission from adsorbed molecules on surfaces is emphasized.  相似文献   

11.
The main goal of this work is the generation of a new force field data set to the interaction of several gases such as H2, O2, N2, CO, H2O, and H2S with alkali cation-doped carbon nanotubes (CNTs) using ab initio calculations at the MP2(full)/6-311++G(d,p) level of theory. Different alkali cations including Li+, Na+, K+ and Cs+ were used to dope in the CNT. The calculated potential energy curve for the interaction of each gas molecule with each alkali cation-doped CNTs was fitted to an analytical potential function to obtain the parameters of the potential function. A modified Morse potential function was selected for the fitting in which the electrostatic interactions has been accounted by adding the β/r term to the Morse potential. The accuracy of the calculated force field was checked via Grand Canonical Monte Carlo (GCMC) simulation of the H2 adsorption on Li-doped graphite and Li-doped CNT. The results of these simulations were compared with the experimental measurements and the closeness of the simulation results with the experimental data indicated the accuracy of the proposed force field. The main merit of this work is the derivation of a specific force field for interaction of each of six gases with four alkali cation-doped CNT, which can be used in molecular simulation of these 24 of systems. The simulation results showed the increase of the H2 adsorption capacity of nanotube and graphite up to 50% and 10%, respectively, due to the insertion of Li ions.  相似文献   

12.
Ultraviolet photoemission spectroscopy with hv < 12 eV has been used to study O2, CO, and H2 adsorption on the cleaved GaAs(110) face. It was found that O2 exposures above 105 L(1LM = 10?6 Torr sec) were required to produce changes in the energy distribution curves. At O2 exposures of 106 L on p-type and 108 L on n-type an oxide peak is observed in the EDC's located 4 eV below the valence band maximum. On p-type GaAs, O2 exposures cause the Fermi level at the surface to move up to a point 0.5 eV above the valence band maximum, while on n-type GaAs O2 exposures do not remove the Fermi level pinning caused by empty surface states on the clean GaAs. CO was found to stick to GaAs, but to desorb over a period of hours, and not to change the surface Fermi level position. H2 did not affect the EDC's, but atomic H lowered the electron affinity and raised the surface position of the Fermi level on p-type GaAs. A correlation is found in which gases which stick to the GaAs cause an upward movement of the Fermi level at the surface on p-type GaAs, while gases which stick only temporarily do not change the surface position of the Fermi level.  相似文献   

13.
The adsorption of methanol on clean and oxygen dosed Cu(110) surfaces has been studied using temperature programmed reaction spectroscopy (TPRS), ultra-violet photoelectron spectroscopy (UPS) and X-ray photoelectron spectroscopy (XPS). Methanol was adsorbed on the clean surface at 140 K in monolayer quantities and subsequently desorbed over a broad range of temperature from 140 to 400 K. The UPS He (II) spectra showed the 5 highest lying emissions seen in the gas phase spectrum of methanol with a chemisorption bonding shift of the two highest lying orbitais due to bonding to the surface via the oxygen atom with which these orbitals are primarily associated. A species of quite a different nature was produced by heating this layer to 270 K. Most noticeably the UPS spectrum showed only 3 emissions and the maximum coverage of this state was approximately 12 monolayer. The data are indicative of the formation of a methoxy species, thus showing that methanol is dissociated on the clean Cu(110) surface at 270 K. The same dissociated species was observed on the oxygen dosed surface, the main difference in this ease being the production of large amounts of H2CO observed in TPRS at 370 K.  相似文献   

14.
The kinetics of the desorption of CO from a Pt(111) crystal between 419 and 505 K is reported using a Low-Energy Molecular-Beam-Scattering (LEMS) technique with a helium probe beam and a CO dosing beam. The resulting first-order Arrhenius rate constant is k = 2.7 × 1013exp(?31.1 kcalmole · RT) s?1. We also report a study of the equilibriumadsorbed CO between 400 and 600 K using LEMS. These results, fitted to a Temkin isotherm model, indicate that the adsorption energy decreases linearly with surface coverage with the average value equal to 31.1 + 1.2 kcalmole over the coverage range 0 < θ ? 0.5. The average harmonic oscillator frequency of the adsorbed CO molecules is 191 ± 76 cm?1.  相似文献   

15.
《Surface science》1986,175(3):L806-L810
The adsorption of CO, C2H4, O2 and H2 on Ni(100) has been followed by measurement of the variation in X-ray induced crystal current (XCC). With the exception of CO, the Δ XCC versus exposure plots showed breaks in slope associated with changes in overlayer structure. The direction of Δ XCC was found to be opposite to the reported work function changes.  相似文献   

16.
《Applied Surface Science》1988,31(1):163-172
Isosteric heats of adsorption ΔHad of CO and sticking coefficients S for CO and H2 on Rh(111) are determined by laser-induced thermal desorption (LITD) in which a pulsed laser beam is focused onto the surface, and rapid local heating yields a desorption signal that is proportional to the adsorbate coverage θ. ΔHad for CO falls from 32.0±2 kcal/mol at low coverage to 14 kcal/mol at saturation, and the desorption pre-exponential factor vd decreases from 1014±0.5 to 1010 s-1. ΔHad, vd, and S of CO all decline sharply above θ = 0.2, corresponding to the occupation of a second binding state. Sticking coefficients for CO and hydrogen indicate precursor intermediates in adsorption.  相似文献   

17.
18.
The kinetics of CO oxidation on the metals Pt and Pd have been analyzed theoretically within the framework of a model that incorporates both the Eley-Rideal and Langmuir-Hinshelwood mechanisms. The model takes into account the dissociative adsorption of oxygen on adjacent vacant surface sites. Exact solutions to the differential equations describing the model have been obtained for (a) the steady-state characterized by constant temperature and pressure, and (b) a quasi-equilibrium state in which one of the reactant gas phase pressures is modulated with frequency ω.  相似文献   

19.
NO and CO adsorption and the NO/CO reaction on Pt(410) are studied by TPD. NO is found to dissociate on Pt(410) at 120 K, but it reacts to form N2O at higher exposures. The N2O desorbs in two peaks at 135 and 150 K. CO adsorbs molecularly, and desorbs in 5 peaks at 550, 500, 450, 380 and about 130 K. CO is also found to dissociate upon heating, leaving a carbon residue on the surface which changes the TPD spectra. The NO/CO reaction shows a surface explosion at 360 K. These results provide additional evidence that Pt(410) has unusual reactivity, as predicted by Banholzer, Park, Mak and Masel, Surface Sci. 128 (1983) 176.  相似文献   

20.
The initial sticking probability of chlorine on Fe(100) at room temperature is calculated to be 0.13, and there is evidence to suggest that the chlorine adsorbs into a short lived mobile precursor state above the surface. The work function change, Δφ, is proportional to coverage and reaches a maximum value of 1.43 eV at saturation. At this coverage a c(2 × 4) LEED pattern is formed. On heating, chlorine is lost from the surface, but the mechanism is such that no detectable loss is incurred at a constant elevated temperature. The c(2 × 4) pattern is shown to be a coincidence structure formed from a (123?123) net of chlorine atoms on the Fe(100) substrate. This structure is a special case of the more general (12tanα?12tanα) structure formed at lower concentrations of chlorine. The c(2 × 4) is formed when α = 56.31°, which gives the chlorine atoms a hard sphere diameter of 0.345 nm and a concentration of 0.75 atoms per four-fold site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号