首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The adsorption and desorption of nitrogen on a platinum filament have been studied by thermal desorption techniques. Nitrogen adsorption becomes significant only after any carbon contamination is removed from the surface by heating the platinum filament in oxygen, and after the CO content in the background gas is reduced substantially. At room temperature nitrogen populates an atomic tightly bound β-state, E = 19 kcal mole?1. The saturation coverage of the (3-state is 4.5 × 1014 atoms cm?2. Formation of the (β-state is a zero order process in the pressure range studied. At 90 K two additional α1- and α2-desorption peaks are observed. The activation energy for desorption for the α2-state is 7.4 kcal mole?1 at low coverage decreasing to 3 kcal mole?1 at saturation of this state, 6 × 10 molecules cm?2. The maximum total coverage in the α-states was 1.2 × 1015 molecules cm?2. A replacement process between the β- and α-states has been observed where each atom in the (β-state excludes two molecules from the α-state.  相似文献   

2.
The interaction of oxygen with a Pt(110) crystal surface has been investigated by thermal desorption mass spectroscopy, LEED and AES. Adsorption at room temperature produces a β-state which desorbs at ~800 K. Complete isotopic mixing occurs in desorption from this state and it populates with a sticking probability which varies as (1 ? θ)2, both observations consistent with dissociative adsorption. The desorption is second order at low coverage but becomes first order at high coverage. The saturationcoverage is 3.5 × 1014 mol cm?2. The spectra have been computer analysed to determine the fraction desorbing by first (β1) and second (β2) order kinetics as a function of total fractional coverage θ using this fraction as the only adjustable parameter. The β1 desorption commences at θ ~ 0.25 and β1 and β2 contribute equally to the desorption at saturation. The kinetic parameters for β1 desorption were calculated from the variation of peak temperature with heating rate as ν1 = 1.7 × 109 s?1 and E1 = 32 kcal mole?1 whereas two different methods of analysis gave consistent parameters ν2 = 6.5 × 10?7 cm2 mol?1 s?1 and E2 = 29 and 30 kcal mole?1 for β2 desorption. The kinetics of desorptior are discussed in terms of the statistics for occupation of near neighbour sites. While many fea tures of the results are consistent with this picture, it is concluded that simple models considering either completely mobile or immobile adlayers with either strong or zero adatom repulsion are not completely satisfactory. The thermal desorption surface coverage has been correlated with the AES measurements and it has been possible to use the AES data for PtO as an internal standard for calibration of the AES oxygen coverage determination. At low temperature (170 K) oxygen populates an additional molecular α-state. Adsorption into the α- and β-states is competitive for the same sites and pre-saturation of the β-state at 300 K excludes the α-state. This, together with the AES observation that the adsorption is enhanced and faster at 450 than 325 K suggests a low activation energy for adsorption into the β-state.  相似文献   

3.
NO adsorbs on Pt(111) with a (temperature independent) initial sticking coefficient S0=0.88. The fraction of molecules not being chemisorbed is directly inelastically scattered back due to failure of translational energy accommodation. The nonlinear variation of s with coverage can well be described by a precursor-state model, the precursor state being formed by NO molecules translationally and rotationally accommodated in a physisorbed second layer. Dissociation is essentially restricted to defect sites and is negligible on perfect (111) planes. These defect sites (present in small concentration) are first populated and are also sampled by the modulated beam technique yielding an activation energy for desorption Ed = 33.1 kcal/mole and preexponential factor vd = 1015.5s?1. Isothermal desorption measurements yielded Ed and vd as a function of coverage: Ed rapidly drops from its initial value (at defect sites) to about 27 kcal/mole — which value is considered as representing the adsorption energy on a perfect (111) plane — and then decreases continuously due to effective repulsive interactions. Simultaneously vd is decreasing to about 1012 s?1 at θ = 0.25 which marks the equilibrium coverage to be reached at 300 K. If the surface is precovered with oxygen atoms the NO sticking coefficient is reduced to 0.6, and the desorption parameters are lowered to Ed = 17.1 kcal/mole and vd= 1012.6s?1 (at zero NO coverage).  相似文献   

4.
Flash desorption mass spectrometry and Auger electron spectroscopy are used to compare the binding states, desorption and adsorption kinetics, and adsorbate densities on the (111), (100), (110), (211), and (210) crystal planes of clean Pt. Desorption obeys first order kinetics for all states with activation energies of the most tightly bound states varying from 36 kcal mole?1 on (211) and (210) to 26 kcal mole?1 on (110) and (111). The sticking coefficient is nearly unity on (110) and (210) and is 0.24 on (100). Multiple binding state (or breaks in the desorption activation energy versus coverage) are observed on all planes. The saturation CO density at 300 K is highest on the (100), (210), and (211) planes and lowest on (110). Properties of (210) and (211) cannot be explained simply in terms of sites on the other planes, and adsorption indicates that none of the planes facet. Previous models of CO on (111) and (110) are compared with present results, and structures are suggested for the other planes.  相似文献   

5.
The interactions between a molecular beam of SiO(g) and a clean and an oxidized tungsten surface were examined in the surface temperature range 600 to 1700 K by mass spectrometrically determined sticking probabilities, by flash desorption mass spectrometry (FDMS) and by Auger electron spectroscopy (AES). The sticking probability, S, of SiO has been determined as a function of coverage and of surface temperature for the clean and the oxidized tungsten surface. Over the temperature range studied and at zero coverage S = 1.0 and 0.88 for the clean and oxidized tungsten surfaces respectively. The results are consistent with both FDMS and AES. For coverage up to one monolayer there is one major adsorption state of SiO on the clean tungsten surface. FDMS shows that Tm = constant (Tm is the surface temperature at which the desorption rate is maximum) and that desorption from this state is described by a simple first order desorption process with activation energy, Ed = 85.3 kcal mole?1 and pre-exponential factor, ν = 2.1 × 1014 sec?1. AES shows that the 92 eV peak characteristic of silicon dominates. In contrast on the oxidized tungsten surface, Tm shifts to higher temperatures with increasing coverage. The data indicate a first order desorption process with a coverage dependent activation energy. At low coverage (θ ? 0.14) there is an adsorption state with Ed = 120 kcal mole?1 and ν = 7.6 × 1019, while at θ = 1.0, Ed = 141 kcal mole?1. This variation is interpreted as due to complex formation on the surface. AES shows that on oxidized tungsten, in contrast to clean tungsten, the dominant peaks occur at 64 and 78 eV, and these peaks are characteristic of higher oxidation states of silicon. Thus, it is concluded that SiO exists in different binding states on clean and oxidized tungsten surfaces.  相似文献   

6.
The chemisorption of NO on Ir(110) has been studied with thermal desorption mass spectrometry (including isotopic exchange experiments), X-ray and UV-photoelectron spectroscopies, Auger electron spectroscopy,LEED and CPD measurements. Chemisorption of NO proceeds by precursor kinetics with the initial probability of adsorption equal to unity independent of surface temperature. Saturation coverage of molecular NO corresponds to 9.6 × 1014 cm?2 below 300 K. Approximately 35% of the saturated layer desorbs as NO in two well separated features of equal integrated intensity in the thermal desorption spectra. The balance of the NO desorbs as N2 and O2 with desorption of N2 beginning after the low-temperature peak of NO has desorbed almost completely. Molecular NO desorbs with activation energies of 23.4–28.9 and 32.5–40.1 kcal mole?1, assuming the preexponential factor for both processes is between 1013–1016 s?1. At low coverages of NO, N2 desorbs with an activation energy of 36–45 kcal mole?1, assuming the preexponential factor is between 10?2 and 10 cm2s?1. Levels at 13.5, 10.4 and 8.5 eV below the Fermi level are observed with HeI UPS, associated with the 4σ, 5σ and 1π orbitals of NO, respectively. Core levels of NO appear at 531.5 eV [O(1s)] and 400.2 eV [N(1s)], and do not shift in the presence of oxygen. Oxygen overlayers tend to stabilize chemisorbed NO as reflected in thermal desorption spectra and a downshift in the 1π level to 9.5 eV.  相似文献   

7.
《Applied Surface Science》1988,31(1):163-172
Isosteric heats of adsorption ΔHad of CO and sticking coefficients S for CO and H2 on Rh(111) are determined by laser-induced thermal desorption (LITD) in which a pulsed laser beam is focused onto the surface, and rapid local heating yields a desorption signal that is proportional to the adsorbate coverage θ. ΔHad for CO falls from 32.0±2 kcal/mol at low coverage to 14 kcal/mol at saturation, and the desorption pre-exponential factor vd decreases from 1014±0.5 to 1010 s-1. ΔHad, vd, and S of CO all decline sharply above θ = 0.2, corresponding to the occupation of a second binding state. Sticking coefficients for CO and hydrogen indicate precursor intermediates in adsorption.  相似文献   

8.
Nitric oxide desorption and reaction kinetics are compared on the (111), (110),and (100) planes of platinum using temperature programmed desorption mass spectrometry. NO exhibits large crystallographic anisotropies with the (100) plane having stronger bonding and much higher decomposition activity than the (110) or (111) planes. The desorption activation energies for the major tightly bound states are 36, 33.5, and 25 kcal mole?1 on the (100), (110), and (111) planes respectively. Pre-exponential factors for these states on the (110) and (111) planes are 1 × 1016±0.5s?1. The major tightly bound state on the (100) plane dissociates to yield 50% N2 and O2, but all other states all planes desorb without significant decomposition. The fraction decomposed is less than 2% on the Pt(111) surface.  相似文献   

9.
The adsorption of carbon monoxide and carbon dioxide on tantalum and the dissolution of these gases in the adsorbent at T ? 300 K have been studied. The flash-filament method (FFM) in a monopole mass-spectrometer and a field emission microscopy was used in the same apparatus. Carbon monoxide and carbon dioxide dissociate on the tantalum surface, carbon monoxide being desorbed in both cases during the flash. The desorption curves of CO reveal three different binding states: two of them (α and \?gb1) for the adsorbed particles whereas the high temperature desorption state relates to the adsorbate dissolved in the metal, For the \?gb1 state of CO the activation energy, the pre-exponential factor and the kinetic order in the kinetic equation of desorption have been estimated. They turned out to be E = 110 kcal/mol, C = 3 × 1012sec?1, and ν = 1. The activation energy of diffusion for CO in tantalum and the energy of outgassing for the metal were found to be 9.4 and 49 kcal/mole, respectively.  相似文献   

10.
The adsorption and desorption of O2 on a Pt(111) surface have been studied using molecular beam/surface scattering techniques, in combination with AES and LEED for surface characterization. Dissociative adsorption occurs with an initial sticking probability which decreases from 0.06 at 300 K to 0.025 at 600 K. These results indicate that adsorption occurs through a weakly-held state, which is also supported by a diffuse fraction seen in the angular distribution of scattered O2 flux. Predominately specular scattering, however, indicates that failure to stick is largely related to failure to accommodate in the molecular adsorption state. Thermal desorption results can be fit by a desorption rate constant with pre-exponential νd = 2.4 × 10?2 cm2 s?1 and activation energy ED which decreases from 51 to 42 kcal/mole?1 with increasing coverage. A forward peaking of the angular distribution of desorbing O2 flux suggests that part of the adsorbed oxygen atoms combine and are ejected from the surface without fully accomodating in the molecular adsorption state. A slight dependance of the dissociative sticking probability upon the angle of beam incidence further supports this contention.  相似文献   

11.
The adsorption of CO on Rh(111) has been studied by thermal desorption mass spectrometry and low-energy electron diffraction (LEED). At temperatures below 180 K, CO adsorbs via a mobile precursor mechanism with sticking coefficient near unity. The activation energy for first-order CO desorption is 31.6 kcal/mole (νd = 1013.6s?1) in the limit of zero coverage.As CO coverage increases, a (√3 ×√3)R30u overlayer is produced and then destroyed with subsequent formation of an overlayer yielding a (2 × 2) LEED pattern in the full coverage limit. These LEED observations allow the absolute assignment of the full CO coverage as 0.75 CO molecules per surface Rh atom. The limiting LEED behavior suggests that at full CO coverage two CO binding states are present together.  相似文献   

12.
CO adsorption/desorption on clean and sulfur covered Pt(S)-[9(111) × (100)] surfaces was studied using AES, TPD, and modulated beam experiments. CO desorption occurred from two states on the clean surface — a low temperature state associated with the (111) terraces and a high temperature state associated with the steps/defects. Thermal desorption results indicated that above small CO coverages conversion from the low temperature state into the high temperature state was activated and that back conversion was slow. Sulfur preferentially adsorbed at step/defect sites and decreased the population of the high temperature desorption state. Modulated beam experiments were performed in order to determine CO adsorption/desorption parameters as a function of sulfur coverage on the Pt crystal. The sticking coefficient and binding energy of CO decreased as the sulfur concentration increased. Sulfur adsorption at step/defect sites decreased the CO sticking coefficient only slightly but increased the effective rate constant for CO desorption significantly. Sulfur adsorption on the terraces affected CO adosrption more than sulfur at step sites. On the clean surface the effective rate constant for CO desorption was
1 × 1015 s?1 exp (?36.2 kcal/moleRT)
Desorption occurred from both terrace and step/defect sites, but the kinetics were characteristic of the step/defect sites. For the surface on which step/defect sites were blocked by sulfur the effective desorption rate constant was
keff = 1 × 1013 s?1 exp (?27.5 kcal/moleRT)
indicating an appreciable decrease in CO binding on the terraces, though sulfur-CO repulsive interactions had probably made keff larger than the true rate constant for desorption from clean (111) planes. The results showed clearly a compensation effect in activation energy and preexponential factor.  相似文献   

13.
14.
The molecular chemisorption of N2 on the reconstructed Ir(110)-(1 × 2) surface has been studied with thermal desorption mass spectrometry, XPS, UPS, AES, LEED and the co-adsorption of N2 with hydrogen. Photoelectron spectroscopy shows molecular levels of N2 at 8.0 (5σ + 1π) and 11.8 (4σ) eV in the valence band and at 399.2 eV with a satellite at 404.2 eV in the N(1s) region, where the binding energies are referenced to the Ir Fermi level. The kinetics of adsorption and desorption show that both precursor kinetics and interadsorbate interactions are important for this chemisorption system. Adsorption occurs with a constant probability of adsorption of unity up to saturation coverage (4.8 × 1014 cm?2), and the thermal desorption spectra give rise to two peaks. The activation energy for desorption varies between 8.5 and 6.0 kcal mole?1 at low and high coverages, respectively. Results of the co-adsorption of N2 and hydrogen indicate that adsorbed N2 resides in the missing-row troughs on the reconstructed surface. Nitrogen is displaced by hydrogen, and the most tightly bound state of hydrogen blocks virtually all N2 adsorption. A p1g1(2 × 2) LEED pattern is associated with a saturated overlayer of adsorbed N2 on Ir(110)-(1 × 2).  相似文献   

15.
Isotope labelling experiments have established that the adsorption of O2 on the W(110) plane at 20 K leads first to the formation of a dissociated atomic layer. A weakly bound molecular species, α-O2, forms only when the atomic layer is essentially complete (O/W = 0.6). The desorption of α-O2 was found to be first order with an activation energy of E = 1.9 kcalmole and a frequency factor γ = 3 × 109 s?1. The activation energy is shown to be less than the enthalpy of desorption and the meaning of this result is discussed.  相似文献   

16.
Characteristics of the adsorption of nitrogen on the (110) plane of tungsten were determined by thermal desorption and work function measurements. The low temperature γ-N2 state desorbs with first order kinetics and an activation energy of 6 kcal mole?1. The absence of isotope mixing between 14N2 and 15N2 demonstrates γ-N2 is adsorbed molecularly. Monolayer coverage shows a decrease of 0.19 eV in work function. A Topping model plot indicates the layer is immobile at 123 K.  相似文献   

17.
A computer-controlled modulated molecular beam source is used to investigate the kinetics of the surface reactions which occur when bromine is reactively scattered by Pd(111). The reaction products are atomic bromine and molecular bromine: the latter species arises from an adatom recombination process and gives rise to a product vector modulated at twice the frequency of the incident beam (2ω.) By making suitable measurements of the temperature dependence of the product vector phase shifts at ω and 2ω, the four kinetic parameters which characterise the first-order and second-order rate processes are obtained. These are: A1 = 2.5×109 s?1, E1 = 177 kJ mol?1, A2 = 3.6×10?10 m2 s?1, E2 = 131 kJ mol?1. The significance of these values is discussed in terms of the properties of the transition state to desorption.  相似文献   

18.
The adsorption/desorption behavior of formic acid from a monolayer of graphite carbon on Ni(110) was studied using AES, LEED and flash desorption spectroscopy. Formic acid adsorbed at 165 K did not form multilayers of adsorbate. Instead, due to strong hydrogen-bonding interactions the formic acid formed a two-dimensional condensed phase on the surface and exhibited zero-order desorption kinetics initially for a 30-fold change in initial coverage. The zero-order desorption rate constant was kd = 1018 exp[?68.2 kJ mol?1/RT]s?1, suggesting a desorption transition state with nearly full translational and rotational freedom on the surface. The desorption kinetics and the coverage limit were consistent with the formation of a surface polymer-monomer equilibrium.  相似文献   

19.
The adsorption/desorption characteristics of CO, O2, and H2 on the Pt(100)-(5 × 20) surface were examined using flash desorption spectroscopy. Subsequent to adsorption at 300 K, CO desorbed from the (5×20) surface in three peaks with binding energies of 28, 31.6 and 33 kcal gmol?1. These states formed differently from those following adsorption on the Pt(100)-(1 × 1) surface, suggesting structural effects on adsorption. Oxygen could be readily adsorbed on the (5×20) surface at temperatures above 500 K and high O2 fluxes up to coverages of 23 of a monolayer with a net sticking probability to ssaturation of ? 10?3. Oxygen adsorption reconstructed the (5 × 20) surface, and several ordered LEED patterns were observed. Upon heating, oxygen desorbed from the surface in two peaks at 676 and 709 K; the lower temperature peak exhibited atrractive lateral interactions evidenced by autocatalytic desorption kinetics. Hydrogen was also found to reconstruct the (5 × 20) surface to the (1 × 1) structure, provided adsorption was performed at 200 K. For all three species, CO, O2, and H2, the surface returned to the (5 × 20) structure only after the adsorbates were completely desorbed from the surface.  相似文献   

20.
Thermal desorption and photoemission spectroscopy (PES) have been used to investigate the chemisorption of CO on an annealed Pt0.98Cu0.02(110) surface. The clean surface shows 9.1 ± 2.6% Cu within the top 4 Å, and is (1 × 3) reconstructed. Thermal desorption of CO has revealed the existence of various adsorption states with these respective heats of adsorption: (α) 35.2 to 37.8 kcal/mol and (β) 24.5 to 26.3 kcal/mol on Pt sites, (γ) 16.0 to 17.2 kcal/mol on PtCu “mixed” sited, and (δ) 12.9 to 13.9 kcal/mol on Cu sites. PES observation of Cu 3d-derived states (using hv = 150 eV) and the Cu 2p32 core levels (using Mg Kα radiation) shows that the electronic structure of the Cu constituent is changed only when CO adsorbs on the Pt-Cu “mixed” sites or the Cu sites. Furthermore, the CO states associated with Pt sites reflect the structural difference between the (1 × 3) alloy surface and the (1 × 2) pure Pt(110) surface: α-CO on the alloy surface desorbs at a temperature 17 to 21 K. higher than the maximum desorption temperature of CO from pure Pt(110), and the ratio of β-CO to α-CO desorption from the alloy surface is larger than the ratio of low temperature to high temperature peaks in the desorption of CO from pure Pt(110).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号