首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Oxygen adsorption on the LaB6(100), (110) and (111) clean surfaces has been studied by means of UPS, XPS and LEED. The results on oxygen adsorption will be discussed on the basis of the structurs and the electronic states on the LaB6(100), (110) and (111) clean surfaces. The surface states on LaB6(110) disappear at the oxygen exposure of 0.4 L where a c(2 × 2) LEED pattern disappears and a (1 × 1) LEED pattern appears. The work function on LaB6(110) is increased to ~3.8 eV by an oxygen exposure of ~2 L. The surface states on LaB6(111) disappear at an oxygen exposure of ~2 L where the work function has a maximum value of ~4.4 eV. Oxygen is adsorbed on the surface boron atoms of LaB6(111) until an exposure of ~2 L. Above this exposure, oxygen is adsorbed on another site to lower the work function from ~4.4 to ~3.8 eV until an oxygen exposure of ~100L. The initial sticking coefficient on LaB6(110) has the highest value of ~1 among the (100), (110) and (111) surfaces. The (100) surface is most stable to oxygen among these surfaces. It is suggested that the dangling bonds of boron atoms play an important role in oxygen adsorption on the LaB6 surfaces.  相似文献   

2.
The present work gives results of a preliminary investigation, carried out by SES, AES, LEED and ELS, on the implantation of nitrogen ions in Ni(110) as a function of ion dose and subsequent surface heat treatment at different temperatures. The fine structure in the SES spectrum is the most sensitive to implantation: peaks at 9, 17.5 and 31.5 eV are shifted towards lower energies by E = 1 eV for the first two peaks and 2.8 eV for the last. At high nitrogen doses a disordered layer is observed by LEED. The p(2 × 3) structure is obtained when the crystal is heated to 750 K. The two electron loss peaks of 4.8 and 10 eV arise from an induced electron N2p level situated 4.8 eV below the Fermi level.  相似文献   

3.
The properties of the structure of clean Si(110) surfaces have been investigated by LEED. The phase transitions between surface structures Si(110)?(4 × 5), Si(110)?(2 × 1) and Si(110)(5 × 1) take place at about 600 and 750°C. The time of reconstruction from the high temperature phase to the low temperature phase may exceed the time of the sample cooling. That explains why the Si(110)?(2 × 1) and the Si(110)?(5 × 1) superstructures may be seen at room temperature. Surface defects favour the retaining of high temperature phases on the surface at room temperature. The transition from the Si(110)?(5 × 1) structure to the Si(110)?(2× 1) structure and conversely in the temperature range of 720–750°C apparently occurs through formation of the intermediate structures Si(110)?(7 × 1) and Si(110)?(9 × 1). The models are given of superstructures observed by LEED.  相似文献   

4.
Low energy electron diffraction (LEED), Auger electron spectroscopy (AES) and photoemission yield spectroscopy (PYS) measurements have been performed on a set of ultrahigh vacuum cleaved Si(111) surfaces with different bulk dopings as a function of Ga or In coverage θ. The metal layers are obtained by evaporation on the unheated substrate and θ varies from zero to several monolayers (ML). First, the 2×1 reconstruction of the clean substrate is replaced by a 3×3 R30° structure at 13 ML, meanwhile the dangling bond peak at 0.6 eV below the valence band edge Evs is replaced by a peak at 0.1 eV for Ga or 0.3 eV for In, below Evs. At the same time, the ionization energy decreases by 0.4 eV (Ga) or 0.6 eV (In), while the Fermi level pinning position gets closer to the valence band edge by about 0.1eV. Upon increasing θ, new LEED structures develop and the electronic properties keep on changing slightly before metallic islands start to grow beyond θ ~1 ML.  相似文献   

5.
Adsorption of CO on Ni(111) surfaces was studied by means of LEED, UPS and thermal desorption spectroscopy. On an initially clean surface adsorbed CO forms a √3 × √3R30° structure at θ = 0.33 whose unit cell is continuously compressed with increasing coverage leading to a c4 × 2-structure at θ = 0.5. Beyond this coverage a more weakly bound phase characterized by a √72 × √72R19° LEED pattern is formed which is interpreted with a hexagonal close-packed arrangement (θ = 0.57) where all CO molecules are either in “bridge” or in single-site positions with a mutual distance of 3.3 Å. If CO is adsorbed on a surface precovered by oxygen (exhibiting an O 2 × 2 structure) a partially disordered coadsorbate 2 × 2 structure with θo = θco = 0.25 is formed where the CO adsorption energy is lowered by about 4 kcal/mole due to repulsive interactions. In this case the photoemission spectrum exhibits not a simple superposition of the features arising from the single-component adsorbates (i.e. maxima at 5.5 eV below the Fermi level with Oad, and at 7.8 (5σ + 1π) and 10.6 eV (4σ) with COad, respectively), but the peak derived from the CO 4σ level is shifted by about 0.3 eV towards higher ionization energies.  相似文献   

6.
The adsorption of xenon has been studied with UV photoemission (UPS), flash desorption (TDS) and work function measurements on differently conditioned Ru(0001) surfaces at 100 K and at pressures up to 3 × 10?5 Torr. Low energy electron diffraction (LEED) and Auger electron spectroscopy (AES) served to ascertain the surface perfectness. On a perfect Ru(0001) surface only one Xe adsorption state is observed, which is characterized byXe5p32,12 electron binding energies of 5.40 and 6.65 eV, an adsorption energy of Ead≈ 5 kcal/mole and dipole moment of μ'T ≈ 0.25 D. On a stepped-kinked Ru(0001) surface, the terrace-width, the step-height and step-orientation of which are well characterized with LEED, however, two coexisting xenon adsorption states are distinguishable by an unprecedented separation inXe 5p32,12 electron binding energies of 800 meV, by their different UPS intensities and line shapes, by their difference in adsorption energy ofΔEad ≈ 3 kcal/mole and finally by their strongly deviating dipole moments of μS = 1.0 D and μT = 0.34 D. The two xenon states (which are also observed on a slightly sputtered surface) are identified as corresponding to xenon atoms being adsorbed at step and terrace sites, respectively. Their relative concentrations as deduced from the UPS intensities quantitatively correlate with the abundance of step and terrace sites of the ideal TLK surface structure model as derived from LEED. Furthermore, ledge-sites and kink-sites are distinguishable via Ead. The Ead heterogeneity on the stepped-kinked Ru(0001) surface is interpreted in terms of different coordination and/or different charge-transfer-bonding at the various surface sites. The enormous increase in Xe 5p electron binding energy of 0.8 eV for Xe atoms at step sites is interpreted as a pure surface dipole potential shift. —The observed effects suggest selective xenon adsorption as a tool for local surface structure determination.  相似文献   

7.
A. Spitzer  H. Lüth 《Surface science》1982,120(2):376-388
The water adsorption on clean and oxygen precovered Cu(110) surfaces is studied by means of UPS, LEED, work function measurements and ELS. At 90 K on the clean surface molecular water adsorption is indicated by UPS. The H2O molecules are bonded at the oxygen end and the H-O-H angle is increased as compared with the free molecule. In the temperature range between 90 and 300 K distorted H2O molecules and adsorbed hydroxyl species (OH) are detected, which are desorbed at room temperature. On an oxygen covered surface hydroxyl groups are formed by dissociation of adsorbed water molecules at a lower temperature than on the clean surface. Multilayers of condensed water are found below 140 K in both cases.  相似文献   

8.
Electron beam assisted adsorption and desorption of oxygen was studied by Auger electron spectroscopy (AES). Beam assisted adsorption was observed on clean as well as on oxidized surfaces. After an oxygen exposure of 1000 × 10?7 Torr min and continuous irradiation with beam voltage of 1.5 kV and beam current density 2 microA mm?2, the oxygen 510 eV signal amplitude from the point of beam impact was 2.5 times greater than the signal from the non-irradiated region. The Ge 89 eV signal showed a corresponding decrease. Enhanced adsorption occurred at beam energies as low as 16.5 eV. After irradiation, the oxidized surface was not carbon contaminated. Following an oxygen exposure of 30 min at 0.1 Torr and 550°C and subsequent additional beam assisted exposure of 1000 × 10?7 Torr min, the maximum oxide thickness was about 18 Å. Beam assisted desorption did not occur from thin oxygen layers (0–510 eV signal strength less than 5 units, calculated oxide thickness about 6 Å), but occurred from thick oxides and stopped after the signal amplitude had decreased to 5 units. Based on these results, a model for the structure of the oxygen layer covering the Ge(111) surface is proposed. Mechanisms for adsorption and desorption are discussed. The implications of beam assisted adsorption and desorption on electron beam operated surface measurements (LEED, AES, ELS, APS etc.) are stressed.  相似文献   

9.
GaAs(110) surfaces cleaved in UHV and exposed to HCOOH have been studied by work function measurements (Kelvin method), electron energy loss spectroscopy (ELS) and by low energy electron diffraction (LEED). From the different changes of the work function on n- and p-type material information about intrinsic and extrinsic surface states is derived. In the loss spectra the adsorbed formate species causes a loss near 9 eV. The intensity of the loss near 20 eV generally ascribed to an excitonic transition from the Ga 3d core level into surface states is reduced only by a factor of two after saturation with HCOOH. This might be related to the c(2 × 2) superstructure observed in LEED, which suggests a saturation coverage of half a monolayer.  相似文献   

10.
Sublimation of deposited germanium sulphide films at the temperatures as low as 350°C results in the appearance of LEED patterns of clean surfaces of germanium. In the interface between Ge(111) or Ge(110) and germanium sulphide, ordered structures are observed, namely Ge(111)?(2 × 1)S and Ge(110)?(10 × 5)S. The conclusion about the structure of the Ge(100) germanium sulphide interface cannot be made unambiguously. The structures of clean Ge(110) surfaces are described. The annealing of clean surfaces of Ge(110) at different temperatures leads to the formation of one of two possible surface structures. After annealing at temperatures below 380°C and above 430°C the Ge(110)?c(8 × 10) clean superstructure is observed. After annealing at temperatures from 380 up to 430°C the surface (110) is rearranged in vicinal planes of the (17 15 1) type with the (2 × 1) superstructure. These structures undergo reversible transitions from one to another at temperatures of about 380 and 430°C.  相似文献   

11.
Electron energy loss spectroscopy (ELS) in the energy range of electronic transitions (primary energy 30 < E0 < 50 eV, resolution ΔE ≈ 0.3 eV) has been used to study the adsorption of CO on polycrystalline surfaces and on the low index faces (100), (110), (111) of Cu at 80 K. Also LEED patterns were investigated and thermal desorption was analyzed by means of the temperature dependence of three losses near 9, 12 and 14 eV characteristic for adsorbed CO. The 12 and 14 eV losses occur on all Cu surfaces in the whole coverage range; they are interpreted in terms of intramolecular transitions of the CO. The 9 eV loss is sensitive to the crystallographic type of Cu surface and to the coverage with CO. The interpretation in terms of d(Cu) → 2π1(CO) charge transfer transitions allows conclusions concerning the adsorption site geometry. The ELS results are consistent with information obtained from LEED. On the (100) surface CO adsorption enhances the intensity of a bulk electronic transition near 4 eV at E0 < 50 eV. This effect is interpreted within the framework of dielectric theory for surface scattering on the basis of the Cu electron energy band scheme.  相似文献   

12.
The condensation of gold onto clean and contaminated, single crystal, tantalum (100) surfaces has been followed by using LEED and AES. On a contaminated surface gold condenses as crystallites in a (211) surface orientation with some degree of preferred, azimuthal orientation. On a clean surface gold condenses in an ordered overlayer. Up to approximately 34 monolayer the structure conforms to the (1 × 1) tantalum surface. Beyond this, the observed LEED structure may be interpreted initially in terms of a TaAu overlayer made up of 90° rotated domains with (001)TaAu//(100)Ta and 〈 10 〉 TaAu// 〈 11 〉 Ta, and then in terms of a gold overlayer in a “distorted (111)” orientation. Annealing of these gold films always results in the formation of a (1 × 1) TaAu overlayer of small crystallite size.  相似文献   

13.
The molecular chemisorption of N2 on the reconstructed Ir(110)-(1 × 2) surface has been studied with thermal desorption mass spectrometry, XPS, UPS, AES, LEED and the co-adsorption of N2 with hydrogen. Photoelectron spectroscopy shows molecular levels of N2 at 8.0 (5σ + 1π) and 11.8 (4σ) eV in the valence band and at 399.2 eV with a satellite at 404.2 eV in the N(1s) region, where the binding energies are referenced to the Ir Fermi level. The kinetics of adsorption and desorption show that both precursor kinetics and interadsorbate interactions are important for this chemisorption system. Adsorption occurs with a constant probability of adsorption of unity up to saturation coverage (4.8 × 1014 cm?2), and the thermal desorption spectra give rise to two peaks. The activation energy for desorption varies between 8.5 and 6.0 kcal mole?1 at low and high coverages, respectively. Results of the co-adsorption of N2 and hydrogen indicate that adsorbed N2 resides in the missing-row troughs on the reconstructed surface. Nitrogen is displaced by hydrogen, and the most tightly bound state of hydrogen blocks virtually all N2 adsorption. A p1g1(2 × 2) LEED pattern is associated with a saturated overlayer of adsorbed N2 on Ir(110)-(1 × 2).  相似文献   

14.
15.
Elastic low energy electron diffraction (LEED) intensity-energy (I-E) measurements for clean (001), (110), and (111) nickel surfaces were obtained at room temperature. Surface composition was monitored by Auger spectroscopy. I-E data from 15 to 220 eV were obtained at normal incidence for the non specular beams and for the specular beams at incidence angles from 4° to 20° on the 0° and 45° azimuths of (001), on the 0° and 90° azimuths of (110), and on the 0° azimuth of (111) nickel. Normalization of the data was performed electronically during data acquisition. Intensities were calibrated with the use of a shielded, biased Faraday collector. The effects of instrumental and experimental uncertainties were examined and minimized to obtain intensities accurate to ± 15 %, energy scales accurate to ± 0.35 eV, and incident and azimuthal angles accurate to ± 0.25° and ± 1.0° respectively.All nickel surfaces have I-E spectra which are characteristic of strong multiple scattering. Angular evolution features for (001) and (110) spectra may be correlated with intraplanar resonances associated with the onset of propagating beams. Only the (001) surfaces were found to have pronounced, sharp resonance features associated with surface barrier resonances and inelastic loss processes. Kinematic analysis of the Lorenzian-shaped I-E peaks on all surfaces in consistent with surface expansion using either an energy-dependent or a constant inner potential of 10.75 ± 0.5 eV. The widths of these same peaks on all surfaces were found to vary as E12 above 40 eV and E13 below.  相似文献   

16.
The reaction of a clean Ti (0001) surface with oxygen gas at low pressure and room temperature has been studied with low-energy electron diffraction (LEED) and Auger electron spectroscopy (AES). At low exposures (about 1 Langmuir) ap(2×2) superstructure is observed which gradually converts to 1×1 at high exposures (about 100 Langmuirs). The LEED spectra confirm that the final 1×1 structure is different from that of clean Ti (0001), while the AES spectra indicate that the final oxide is probably TiO, not TiO2. The plausibility of this indication is discussed.  相似文献   

17.
The (010) surface of single crystal MoO3 has been prepared and examined using LEED, XPS, UPS, and ELS. Three methods yield the stoichiometric surface: scraping in UHV and annealing, ion etching followed by reoxidation (770 K, 102 Pa O2), or oxygen treatment to remove carbon contamination. LEED shows the surface periodicity is the same as that of the bulk (010). The MoO3 valence band is 7 eV wide with density of states maxima at 1.5, 3.6, and 5.6 eV below the top of the valence band. Heating MoO3 in vacuum reduces the surface region. XPS indicates the O/Mo atomic ratio decreases to 2.85 ± 0.12 on heating to 600 K. Ar ion bombardment disorders the surface and reduces the surface O/Mo atomic ratio to 1.6. Annealing of reduced surfaces at > 770 K incompletely reoxidizes them by diffusion of oxygen from the bulk. UPS of reduced and annealed MoO3 exhibits two new emission features in the bandgap at 0.9 and 2.0 eV above the top of the valence band. These features originate from Mo derived states of a defect involving two or more Mo atoms, such as crystallographic shear planes. Because of the insulating nature of MoO3, surface charging and electron beam induced damage were substantial hindrances to electron spectroscopic examination.  相似文献   

18.
The structural properties of clean Cr(100) and V(100) surfaces have been examined by LEED, AES, Δφ and photoelectron spectroscopy with particular reference to the question of possible reconstruction. When clean, both surfaces exhibit (1 × 1) periodicity at 300 K. The c(2 × 2) phase on Cr(100) is associated with small amounts of adsorbed carbon and oxygen, and the (5 × 1) phase on V(100) is induced by subsurface oxygen. The nature of the V(100)?(5 × 1) surface was examined in detail by studying oxygen and bromine chemisorption on the (1 × 1) and (5 × 1) surfaces respectively. The surface → bulk transport of oxygen and the low pressure oxidation of V are characterised; a convenient spectroscopic method for detecting low levels of oxygen in vanadium is described. Electronic and structural aspects of the vanadium-bromine interaction are elucidated.  相似文献   

19.
The hydrogen-induced reconstruction on a high step density W(001) crystal, (2×2)R45°-H, with steps oriented parallel to the [110] and ~ 28 Å average terrace width has been investigated using LEED symmetry, beam shape analyses, and EELS. The symmetry of the LEED pattern is observed to change from p2mg for the (2×2)R45° clean surface reconstruction to c2mm for the commensurate phase (2×2)R45°-H reconstruction. Correspondingly, the shapes of the half-order beams indicate that the hydrogen-induced reconstruction domains are much less elongated than the clean surface domains. A splitting of each half-order beam into four beams at higher exposures indicates the existence of two domains of the incommensurate phase. A commensurate phase v1 vibrational loss peak centered at 160 meV in the EELS spectrum broadens on the low-energy side during the incommensurate phase and then shifts toward 130 meV and narrows as the (1×1)-H saturation structure develops. These observations imply that there is no long-range inhibition ( ~ 20 Å) to the formation of either commensurate or incommensurate phase; hydrogen induces a switching of the atomic displacements from 〈110〉 directions on a clean surface to 〈100〉 directions, even with steps oriented parallel to the [110]; and in the incommensurate phase there is a distribution of hydrogen site geometries with the most probable geometry more like the commensurate phase geometry than the saturation phase geometry.  相似文献   

20.
The interaction of NO with a Ni (111) surface was studied by means of LEED, AES, UPS and flash desorption spectroscopy. NO adsorbs with a high sticking probability and may form two ordered structures (c4 × 2 and hexagonal) from (undissociated) NOad. The mean adsorption energy is about 25 kcalmole. Dissociation of adsorbed NO starts already at ?120°C, but the activation energy for this process increases with increasing coverage (and even by the presence of preadsorbed oxygen) up to the value for the activation energy of NO desorption. The recombination of adsorbed nitrogen atoms and desorption of N2 occurs around 600 °C with an activation energy of about 52 kcalmole. A chemisorbed oxygen layer converts upon further increase of the oxygen concentration into epitaxial NiO. A mixed layer consisting of Nad + Oad (after thermal decomposition of NO) exhibits a complex LEED pattern and can be stripped of adsorbed oxygen by reduction with H2. This yields an Nad overlayer exhibiting a 6 × 2 LEED pattern. A series of new maxima at ≈ ?2, ?8.8 and ?14.6 eV is observed in the UV photoelectron spectra from adsorbed NO which are identified with surface states derived from molecular orbitals of free NO. Nad as well as Oad causes a peak at ?5.6 eV which is derived from the 2p electrons of the adsorbate. The photoelectron spectrum from NiO agrees closely with a recent theoretical evaluation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号