首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The As-rich (2 × 2), a newly found (√3 × √3) and the (√19 × √19) surfaces of GaAs(1̄1̄1̄) are studied by angular resolved UPS (ARUPS). The (2 × 2) surface is prepared by molecular beam epitaxy and the others by mild annealing. For the (2 × 2) surface emission from surface states is observed, which shows dispersion periodic within the (2 × 2) surface Brillouin zone. Using s-polarized light and the known symmetry selection rules the uppermost surface bands between 1 and 2 eV below the valence band maximum are assigned to the As dangling bond orbital. The bands near 4 and 7 eV assigned to the backbonds. From the strong decrease of emission intensity of the As-derived surface states between the (2 × 2) and the annealed surfaces it is concluded that the character of the As dangling bond orbital must have been changed from sp3-hybridic to s-like. This gives further evidence for our recently proposed model for the (√19 × √19) surface, which is particularly applicable for the (√3 × √3) surface.  相似文献   

2.
Molecular sulphur undergoes rapid dissociative chemisorption on Ag(111) with an essentially constant sticking probability of unity up to the completion of the first layer of S atoms. At this stage a (√39 R 16.1° × √39 R? 16.1°) structure is formed in which the S atom arrangement and spacing is similar to that in the (100) plane of γ-Ag2S (the high temperature form of silver sulphide). Further dosing with S2 leads to continued rapid uptake of sulphur and the appearance of a (√7 × √7) R 10.9° structure, the Auger, Δφ and thermal desorption data all indicate that fast formation of Ag2S now occurs. Very well-ordered growth of γ-Ag2S(111) is now observed, and low-temperature S2 desorption spectra appear which show that the activation energy for S2 desorption is ~175 kJ mol?1 ; this value is in excellent agreement with that observed for the enthalpy of decomposition of bulk Ag2S (2 Ag2S(s) → 4 Ag(s) + S2(g), ΔH = +179 kJmol?1). All the properties of the Ag(111)-S system imply that the material characterised by the √39 structure (i.e. the first adsorbed layer of S) is very different from bulk Ag2S. This is discussed and compared with the results of other studies on metal-sulphur systems.  相似文献   

3.
The adsorption, desorption, and surface structural properties of Na and NO on Ag(111), together with their coadsorption and surface reactivity, have been studied by LEED, Auger spectroscopy, and thermal desorption. On the clean surface, non-dissociative adsorption of NO into the a-state occurs at 300 K with an initial sticking probability of ~0.1, saturation occurring at a coverage of ~120. Desorption occurs reversibly without decomposition and is characterised by a desorption energy of Ed ~ 103 kJ mol?1. In the coverage regime 0 < θNa < 1, sodium adsorbs in registry with the Ag surface mesh and the desorption spectra show a single peak corresponding to Ed ~ 228 kJ mol?1. For multilayer coverages (1 < θ Na < 5) a new low temperature peak appears in the desorption spectra with Ed ~ 187 kJ mol?1. This is identified with Na desorption from an essentially Na surface, and the desorption energy indicates that Na atoms beyond the first chemisorbed layer are significantly influenced by the presence of the Ag substrate. The LEED results show that Na multilayers grow as a (√7 × √7) R19.2° overlayer, and are interpreted in a way which is consistent with the above conclusion. Coadsorption of Na and NO leads to the appearance of a more strongly bound and reactive chemisorbed state of NO (β-NO) with Ed ~ 121 kJ mol?1. β-NO appears to undego surface dissociation to yield adsorbed O and N atoms whose subsequent reactions lead to the formation of N2, N2O, and O2 as gaseous products. The reactive behaviour of the system is complicated by the effects of Na and O diffusion into the bulk of the specimen, but certain invariant features permit us to postulate an overall reaction mechanism, and the results obtained here are compared with other relevant work.  相似文献   

4.
At 300 K and in the coverage regime (0<θ<13) bromine chemisorbs rapidly on Pd(111); the sticking probability and dipole moment per adatom remain constant at 0.8 ± 0.2 and 1.2 D, respectively. This stage is marked by the appearance of a √3 structure: desorption occurs exclusively as atomic Br. At higher coverages, desorption of molecular Br2 begins (desorption energy ~130 kJ mol?1) as does the nucleation and growth of PdBr2 on the surface. This latter stage is signalled by the appearance of a √2 LEED pattern and the observation of PdBr2 as a desorption product (desorption energy ~37 kJ mol?1). Some PdBr2 is also lost by surface decomposition and subsequent evaporation of atomic Br. The data indicate that the transition state to Br adatom desorption is localised and that PdBr2(a) ? Br(a) interconversion occurs; these surface species do not appear to be in thermodynamic equilibrium during the desorption process.  相似文献   

5.
The adsorption, desorption, surface structural chemistry, and electron impact properties of CO on Rh(110) have been studied by LEED, Auger spectroscopy, thermal desorption, and surface potential measurements. At 300 K, CO adsorbs into a single chemisorbed state whose desorption energy (Ed) is ~130kJmol-1. The initial sticking probability is unity, and at saturation coverage a (2 × 1)plgl ordered phase reaches its maximum degree of perfection, thus demonstrating that this CO structure is common to the (110) faces of all the cubic platinum group metals. The saturated adlayer corresponds to θ = 1 and shows a surface potential of Δ? = +0.97 V. Under electron impact, desorption and dissociation of CO occur with about equal probability, the relevant cross sections being ~10-22 m2 in each case. Slow thermal dissociation of CO occurs at high temperature and pressure, leaving a deposit of C and O atoms on the surface. The thermal, electron impact, and Δ? properties of Rh(110)CO resemble those of Ni(110)CO rather closely, and are very different from those of Pt(110)CO. Surface carbon is shown to inhibit CO chemisorption, whereas surface oxygen appears to lead to the formation of a new more tightly bound form of CO with a considerably enhanced desorption energy (Ed ~ 183 kJmol-1). Similar oxygen-induced high temperature CO states have been reported recently on Co(0001) and Ru(101&#x0304;1).  相似文献   

6.
H. Papp 《Surface science》1983,129(1):205-218
The chemisorption of CO on Co(0001) has been investigated by LEED, UPS, EELS, Auger and sp measurements. CO is molecularly adsorbed on Co(0001) in the investigated temperature range from 100 to 450 K. This is deduced from the UPS and EELS results and the reversibility of the sp and LEED data. The isosteric heat of adsorption has a constant value of 128 kJ/mol up to a coverage of 13 and drops then to about 96 kJ/mol. This coincides with the completion of a (√3 × √3)R30° overlayer structure and the formation of a (2√3 × 2√3)R30° CO overlayer which is fully developed at 100 K.  相似文献   

7.
The adsorption, desorption, and structural properties of chlorine adlayers on Cu(111) and Ag(111) have been studied by LEED, Auger, Δ?, and thermal desorption measurements. Ancillary experiments were also carried out on cuprous chloride for purposes of comparison with the Cu(111)-Cl data. Chlorine adsorption is rapid on both metals and follows precursor kinetics, the absolute initial sticking probabilities being ~1.0 (Cu) and ~0.5 (Ag). Δ? results suggest that significant depolarisation of the chemisorption bond occurs at high coverages, the maximum values being + 1.2 eV (Cu) and + 1.8 eV (Ag). On Cu(111), adsorption leads to the formation of a sequence of well-ordered phases; in order of increasing coverage, these are as follows: (√3 × √3)R30°, (12√3 × 12√3)R30°, (4√7 × 4√7)R19.2°, and (6√3 × 6√3)R30°. On Ag(111) (√3 × √3)R30°, and (10 × 10) structures are observed. All six structures are susceptible to a straightforward interpretation in terms of coincidence lattices resulting from the progressive uniform compression of a hexagonal layer of Cl atoms. This interpretation is consistent with all the experimental results, and gives values for the nearest-neighbour ClCl spacing on both Cu(111) and Ag(111) which are in good agreement with other work on other surfaces. Chlorine desorbs exclusively as atoms from both metals with first-order desorption kinetics, and apparent desorption energies of 236 (Cu) and 209 (Ag) kJ mol?1. These values, which depend on an assumed pre-exponential factor of 1013 s?1, are shown to be inconsistent with the thermochemical constraints on the system necessitated by the complete absence of Cl2 desorption. Lower limits for the pre-exponential factors are then deduced, and the values are found to be consistent with the differences between the CuCl and AgCl systems.  相似文献   

8.
The adsorption of CO and O on Ni (111) was studied by low-energy ion scattering (ISS) and low-energy electron diffraction (LEED). For the ordered (√7/2) × (√7/2) R19.1° CO layer ion scattering gives a coverage greater than 12 monolayer, and for the (2 × 2) O layer a coverage of 14 monolayer. The CO is non-dissociatively adsorbed, with the C bound to the Ni. The molecules are oriented parallel to the surface normal. Island formation at lower CO coverages is possible.  相似文献   

9.
H.H. Farrell 《Surface science》1980,100(3):613-625
Using LEED and AES, the coadsorption of iodine and chlorine on Pt(111) was studied. Five surface structures were observed: (1 × 1), (√3 × √3)R30°, (√7 × √7)R±19.1°, (3 × 3) and c(2 × 4). Fractional monolayer coverages for both Cl and I are assigned to these structures. The importance of the adatom-adatom steric interactions is discussed.  相似文献   

10.
On atomically rough areas of a thermally cleaned rhenium field emitter, adsorbed gold behaves like it does on tungsten. The average work function \?gf increases at low average gold coverage \?gq due to formation of gold-rhenium dipoles, and at high coverage a structural transformation in the gold layer leads to a \?gq-independent work function. Broadly similar behaviour is found for gold on the low-index planes of tungsten, but on low-index rhenium planes gold behaves rather differently. When thermally cleaned at > 2200 K and annealed below 800 K, the work function, φ(clean), of (101&#x0304;1&#x0304;) takes one of two values 5.25 ± 0.04 eV, and 5.36 ± 0.04 eV, which are tentatively attributed to the two possible structures of this plane. Similar behaviour is expected and observed for (101&#x0304;0),but the values taken by φ(clean) are not well defined. Both forms of (101&#x0304;1&#x0304;) are thought to undergo reconstruction above 800 K forming a single structure with φ(clean) = 5.55 ± 0.03 eV. (112&#x0304;0) and (112&#x0304;2&#x0304;) each have only one possible structure, and in keeping with this, φ(clean) has a single well-defined value for each plane. The flatness of (101&#x0304;1&#x0304;) and (101&#x0304;0) leads to field reduction at their centres which produces an increase in their measured work functions by up to 10%. The initial increase in φ produced by gold condensed at 78 K and spread at low equilibration temperatures Ts on (112&#x0304;2&#x0304;), (101&#x0304;1&#x0304;) and (112&#x0304;0) is attributed to gold-rhenium dipoles, which, on the latter two planes approximate to the Topping model, giving dipoles characterised by μ0(1011) = 0.1 × 10?30 C-m with α = 10 Å3 and μ0(112&#x0304;0) = 0.32 × 10?30 C-m with α = 22 Å3, where μ0 is the zero-coverage dipole moment and α its polarizability. Failure of the Topping model on (112&#x0304;2&#x0304;) is attributed to its atomically rough structure. No dipole effect is seen on (101&#x0304;0). Energy spectroscopy of electrons field emitted at (202&#x0304;1&#x0304;) and (101&#x0304;1&#x0304;) demonstrates the non-free character of electrons in rhenium, while the small effect of adsorbed gold strengthens the belief that gold is bound through a greatly broadened 6s level centred 5.6 eV below the Fermi level and the dipolar nature of the bond supports this model. At higher values of Ts and \?gq gold appears to form states which are well-characterised by a coverage-independent work function. (101&#x0304;0), (101&#x0304;1&#x0304;) and (112&#x0304;0) each form two such states, one in the range 2 < \?gq < 4 (state 1), and the second at \?gq > 4 (state 2). The atomic radii of gold and rhenium are thought to be sufficiently similar to allow the possibility that state 1 is a replication of the Re plane structure by gold. The high work function and thermal stability of state 2, taken together with the observed temperature dependence of the transformation of state 1 to state 2, encourages the belief that state 2 results from atomic rearrangement of state 1 into a close-packed Au(111) structure. State 2 also forms on (112&#x0304;2&#x0304;) and the absence of state 1 on this plane suggests some surface alloying at coverages below 4 \?gq.  相似文献   

11.
Using RHEED (reflection high energy electron diffraction) techniques, superstructures of submonolayer indium films deposited on silicon (111) 7 × 7 surfaces have been investigated. Combination of the deposition experiments at a constant deposition rate and the desorption experiments under isothermal condition has yielded desorption energies and apparent vibrational periods of indium adatoms (66 kcalmol?1, 6 × 10?17 s for √31 phase and 63 kcalmol?1, 3 × 10?15 s for √3 phase). A pattern overlapping √31 + √31, observed in the desorption process, is interpreted as a fluctuation phenomenon caused by a finite interaction range of indium adatoms on silicon (111) surfaces. The range is determined to be ~24 Å.  相似文献   

12.
When submonolayer and monolayer amounts of indium were deposited onto clean Ge(111) surfaces at room temperature and then heated, (13 × 2√3), (12 × 2√3), (11 × 2√3), (10 × 2√3), (4√3 × 4√3) R30°-related, (√31 × √31) R(±9°), (√61 × √61) R(30 ± 4°) and (4.3 × 4.3) structures appeared on the surfaces at fixed In coverages and at fixed surface temperatures. General intensity features of superlattice reflections are derived from intensity estimations by eye of superlattice spots in their RHEED patterns, and some structural characteristics of the superstructures are clarified from the analysis of the general intensity features. The former four superstructures are long-period (2 × 2)-related antiphase structures whose period changes, depending on the coverage. The wavevector characterizing the (13 × 2√3) structure, which appears at the smallest coverage, almost coincides with those of structural fluctuation emerging at the clean Ge(111) (1 × 1) surface around 350°C. The coincidence suggests that the longperiod (2 × 2)-related antiphase structures have a close relationship to the structural fluctuation and, besides, to the (2 × 8) structure in their origin.  相似文献   

13.
A (√2 × √2)R45° surface structure on W {001} produced only by cooling below ~370 K, first reported by Yonehara and Schmidt, has been investigated by LEED, AES, work function change, characteristic loss and low energy Auger fine structure measurements. No significant changes at any energy up to 520 eV occur in the standard Auger spectrum upon cooling to 220 K for as long as 30 min after a flash to >2 500 K. The work function of the (√2 × √2) R45° at 210 K is 20 ± 10 mV below that of the (1 × 1) surface, and a sensitive feature in the fine structure of the N7VV AES transition shows approximately 60% attenuation. Unlike for H2 adsorption, the “surface plasmon” loss peak exhibits little if any measurable attenuation and no measurable shift in energy as the crystal cools to form the (√2 × √2)R45°. The rate of intensity buildup in the 12-order LEED beams is strictly temperature dependent, and significant differences exist between the 12-order LEED spectra produced by cooling and those produced by H2 adsorption. Only 2-fold symmetry was observed in the LEED beam intensities at exactly normal incidence, rather than 4-fold as expected for statistically equal numbers of rotationally equivalent domains. The LEED I-V spectra for 24 fractional order beams and 12 integral order beams, taken over large energy ranges at normal incidence, clearly establish that the beam intensities display 2 mm point group symmetry, and hence a preference of one domain orientation over the other. No beam broadening or splitting effects were apparent, implying only incoherent scattering from the various domains. The half-order beam spectra (±h/2, ±h/2) are identical in relative intensity to the (±h/2, ±h/2) spectra but different in absolute intensity by a constant factor, which can be explained only by domains with p2mg space group symmetry rather than just p2mm. Adsorption of H2 onto the cooled (√2 × √2)R45° structure restores the 4-fold symmetry in the LEED beam intensities at normal incidence, giving a c(2 × 2) hydrogen structure, the same as when adsorbing H2 onto the above room temperature (1 × 1) crystal. This strongly supports the observed p2mg symmetry as being a true property of the cooled (√2 × √2)R45° surface structure. These results show that the (1 × 1) → (√2 × √2) R45° transition produced by cooling is a transition involving displacement of surface W atoms, and that it apparently can be characterized as an order-order, second degree, homogeneous nucleation process, which is strongly prohibited by the presence of impurities or defects.  相似文献   

14.
The adsorption of oxygen and the interaction of carbon monoxide with oxygen on Ru(101) have been studied by LEED, Auger spectroscopy and thermal desorption. Oxygen chemisorbs at 300 K via a precursor state and with an initial sticking probability of ~0.004, the enthalpy of adsorption being ~300 kJ mol?1. As coverage increases a well ordered ¦11,30¦ phase is formed which at higher coverages undergoes compression along [010] to form a ¦21,50¦ structure, and the surface eventually saturates at 0 ~ 89. Incorporation of oxygen into the subsurface region of the crystal leads to drastic changes in the surface chemistry of CO. A new high; temperature peak (γ CO, Ed ~ 800 kJ mol?1) appears in the desorption spectra, in addition to the α and β CO peaks which are characteristic of the clean surface. Coadsorption experiments using 18O2 indicate that γ CO is not dissociatively adsorbed, and this species is also shown to be in competition with β CO for a common adsorption site. The unusual temperature dependence of the LEED intensities of the ¦11,30¦-O phase and the nature of α, β, and β CO are discussed. Oxygen does not displace adsorbed CO at 300 K and the converse is also true, neither do any Eley-Rideal or Langmuir-Hinshelwood reactions occur under these conditions. Such processes do occur at higher temperatures, and in particular the reaction CO(g) + O(a) → CO2(g) appears to occur with much greater collisional efficiency than on Ru(001). The oxidation of CO has been examined under steady state conditions, and the reaction was found to proceed with an apparent activation energy of 39 kJ mol?. This result rules out the commonly accepted explanation that CO desorption is rate determining, and is compared with the findings of other authors.  相似文献   

15.
The chemisorption of nitric oxide on (110) nickel has been investigated by Auger electron spectroscopy, LEED and thermal desorption. The NO adsorbed irreversibly at 300 K and a faint (2 × 3) structure was observed. At 500 K this pattern intensified, the nitrogen Auger signal increased and the oxygen signal decreased. This is interpreted as the dissociation of NO which had been bound via nitrogen to the surface. By measuring the rate of the decomposition as a function of temperature the dissociation energy is calculated at 125 kJ mol?1. At ~860 K nitrogen desorbs. The rate of this desorption has been measured by AES and by quantitative thermal desorption. It is shown that the desorption of N2 is first order and that the binding energy is 213 kJ mol?1. The small increase in desorption temperature with increasing coverage is interpreted as due to an attractive interaction between adsorbed molecules of ~14 kJ mol?1 for a monolayer. The (2 × 3) LEED pattern which persists from 500–800 K is shown to be associated with nitrogen only. The same pattern is obtained on a carbon contaminated crystal from which oxygen has desorbed as CO and CO2. The (2 × 3) pattern has spots split along the (0.1) direction as (m, n3) and (m2, n). This is interpreted as domains of (2 × 3) structures separated by boundaries which give phase differences of 3 and π. The split spots coalesce as the nitrogen starts to desorb. A (2 × 1) pattern due to adsorbed oxygen was then observed to 1100 K when the oxygen dissolved in the crystal leaving the nickel (110) pattern.  相似文献   

16.
17.
The adsorption/desorption characteristics of CO, O2, and H2 on the Pt(100)-(5 × 20) surface were examined using flash desorption spectroscopy. Subsequent to adsorption at 300 K, CO desorbed from the (5×20) surface in three peaks with binding energies of 28, 31.6 and 33 kcal gmol?1. These states formed differently from those following adsorption on the Pt(100)-(1 × 1) surface, suggesting structural effects on adsorption. Oxygen could be readily adsorbed on the (5×20) surface at temperatures above 500 K and high O2 fluxes up to coverages of 23 of a monolayer with a net sticking probability to ssaturation of ? 10?3. Oxygen adsorption reconstructed the (5 × 20) surface, and several ordered LEED patterns were observed. Upon heating, oxygen desorbed from the surface in two peaks at 676 and 709 K; the lower temperature peak exhibited atrractive lateral interactions evidenced by autocatalytic desorption kinetics. Hydrogen was also found to reconstruct the (5 × 20) surface to the (1 × 1) structure, provided adsorption was performed at 200 K. For all three species, CO, O2, and H2, the surface returned to the (5 × 20) structure only after the adsorbates were completely desorbed from the surface.  相似文献   

18.
The hexagonal LEED pattern obtained from a clean, reconstructed (0001)Zn face of a ZnO crystal could indicate either a (2 × 2) or a (√3 × √3) structure. We prove that we observed a (√3 × √3) pattern by identifying the line of h, h, 2h, λ reflections from an X-ray diffraction photograph of the sample.  相似文献   

19.
Angle-resolved photoemission observations of CO adsorbed on Cu{100} to form the (√2 × √2)R45° structure show emission from a CO 2π1 related state away from the centre of the surface Brillouin zone. These observations are shown to be compatible with the anticipated dispersion of such states and with weak 2π1 backbonding on this substrate.  相似文献   

20.
A new modification of molecular beam relaxation spectrometry (MBRS) is described: the temperature jump method for studying catalytic surface processes on metal foils. The temperature of the catalyst foil is maintained by direct ohmic heating; a constant particle beam is directed towards the catalyst surface. A jump of the surface temperature caused by a high current pulse generates a response of the fluxes of desorption. The decay of the desorption intensity after the temperature jump contains the relaxation times of the elementary steps involved. The mathematical treatments of unimolecular and bimolecular surface reactions, of sequences of two and three unimolecular steps and of a sequential reaction accompanied by the redesorption of the reactant are given. The application of the new method is shown by a study of the catalytic decomposition of CH3)OH on polycrystalline Ni: CO and H2 are the sole reaction products. The limit of the catalytic activity — apart from the low sticking probability of the reactant — must be seen in the abstraction of the first methyl hydrogen from the transient methoxy species. In the temperature range between 320 and 550 K the reaction mechanism can be described as follows:
Rate constants in dependence from surface temperature T are: k1 = 4.2 × 104 exp(?22.4RTkJmol) s?1; k3 = 2.4 × 109 exp(?75RTkJmol) s?1; k4 = 1.2 × 1013 exp(?104RTkJmol) s?1; η = 0.2. Typical surface residence times of the intermediates are: 110 ? τ1 ? 15 ms at 320 ? T ? 450 K; 210 ? τ3 ? 6 ms at 450 ? T ? 550 K; 98 ? τ4 ? 6 ms at 450 ? T ? 500 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号