首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
射频感应耦合等离子体能够在室温条件下选择活化并分解二氧化碳,本文通过调控等离子体放电条件(气体流量、放电频率等)获得了较高的一氧化碳产率. 研究发现网状金属催化剂在二氧化碳等离子体中能促进氧原子的复合反应,从而有效抑制其与目标产物一氧化碳的逆反应,提升反应整体效率. 本文为实时转化过剩的可再生电能(来自太阳能、风能、潮汐能等)为高附加值一氧化碳中的化学能提供了一个可行的方案.  相似文献   

2.
Measurements in SF6?H2 mixtures of HF1 fluorescence at 2.8 μm induced by pulsed CO2 laser radiation are reported. The dependence of fluorescence intensity on laser fluence is found to be strongly affected by the laser beam geometry in the interaction region. Our results show that the technique of HF1 fluorescence intensity detection can be a sensitive and reliable single-shot measure of multiple-photon dissociation of SF6 in a collisionless regime on condition that the laser fluence is uniform along the interaction region which is monitored.  相似文献   

3.
The direct and H-mediated dissociation of CO2 on Ni(2 1 1) were investigated at the level of density functional theory. Although formate (HCOO) formation via CO2 hydrogenation was widely reported for CO2 adsorption on metal surfaces, it is found that on Ni(2 1 1) HCOO dissociation into CHO and O is much difficult, while direct dissociation of adsorbed CO2 into CO and O is more favorable. It is also found that the degree of electron transfer from surface to adsorbed CO2 correlates with the elongation of C-O bond lengths and the reduction of the CO2 dissociation barrier.  相似文献   

4.
We study the intensity and degree of linear polarization of reflected solar radiation at the top of the atmosphere within two carbon dioxide bands and one oxygen absorption band in the near-infrared. In particular, we are interested in the sensitivity of the degree of linear polarization and intensity to changes of aerosol and cirrus cloud layer heights, microphysical properties, and surface albedo. For the simulations we use spectral response functions representative of the Orbiting Carbon Observatory (OCO). Inside the O2A band at 760 nm and strong CO2 band at 2060 nm we find a strong influence of the aerosol and cirrus cloud layer height on the degree of linear polarization. An increase of the aerosol or cirrus cloud layer height can lead either to a decrease or increase of the polarization within the band, depending on the microphysical and optical properties of the scatterers, surface albedo, and absorption strength in the bands. The results for the O2A band also indicate that even over land OCO enables an estimation of the height of an aerosol or cirrus cloud layer. Inside the weak CO2 band at 1610 nm the influence of aerosol or cirrus cloud layer heights is lower as compared to the O2A band and CO2 band at 2060 nm, due to the relatively stronger surface influence. Here an increase of aerosol or cirrus cloud layer height leads to an increase of the degree of linear polarization even in case of low surface albedo and for weakly polarizing scatterers. For the weak CO2 band at 1610 nm we also study the influence of the aerosol or cirrus cloud layer height on the column CO2 estimate and the errors resulting from ignoring polarization in simulations of backscatter measurements by space-based instruments such as OCO. Depending on the surface albedo, misinterpretations of the height of atmospheric scatterers might strongly affect the column CO2 estimates.  相似文献   

5.
Intensity measurements of the ν1, 2ν2 vibrational Raman bands of 12CO2 and 13CO2 lend support to Amat's suggestion that the unperturbed 0200 level is above the 1000 level for 12CO2. For 13CO2, however, the ordering of the levels is reversed.  相似文献   

6.
The behavior of the desorbing F+ ion current from electron bombarded CCl2F2, C2H2F2 and C2F6 adsorbed on tungsten has been used to investigate the processes of adsorption and desorption of these gases. For tungsten near room temperature, measurements of the F+ ion current as a function of electron bombardment time indicated very similar or even identical F+-yielding adsorbed species resulting from adsorption of either CCl2F2 or C2H2F2 and widely different species from C2F6. Cl+ ions were also observed to desorb from CCl2F2 ad-layers. The behavior of the Cl+ ion current with time during electron bombardment indicated electronic conversion between adsorbed binding modes. Complementary investigations on the interaction of CCl2F2, C2H2F2 and C2F6 with tungsten were carried out by thermal desorption experiments in which the F+ ion signal was used to observe the coverage decrease of the F+-yielding species. The experiments were performed at tungsten temperatures in the 1200–1600 K range. It was concluded that the F+-yielding adsorbed species from CCl2F2 and C2H2F2 were strongly bound to the tungsten surface. The F+-yielding species from C2F6 were found to be weakly bound. From a comparison of the ESD and thermal desorption results, the possibility of dissociative adsorption as well as the nature of the adsorbed species is discussed.  相似文献   

7.
The adsorption of NH3 on Ni(110) has been examined using electron stimulated desorption ion angular distribution (ESDIAD), low energy electron diffraction (LEED) and thermal desorption spectrometry (TDS). At ~ 85 K the NH3 molecule enters into a series of chemisorption and physisorption states whose structures have been partially characterized by means of ESDIAD and LEED. Upon heating, these NH3 states desorb without dissociation; for adsorption below 300 K there is essentially no thermal decomposition. The ammonia adiayer was found to be extremely sensitive to electron irradiation effects. Evidence was found to support the irradiation induced conversion of NH3(ads) to an amido intermediate, nh2(ads). The NH2 adsorbs with its C2v axis normal to the surface and its NH bonds aligned along the [001] and [001?] directions. In the absence of further electron irradiation the nh2(ads) species is stable to 375 K whereupon it dissociates to N(ads)and H2(g). The remaining N(ads) desorbs near 750 K with significant attractive N…N interaction. No evidence is found for an imido intermediate, nh(ads). nh2(ads) also undergoes a disproportionation/recombination reaction upon heating to produce an additional NH3 desorption state. A significant isotope effect for NH versus ND scission, sensitive to the adsorption state of the ammonia, is found to occur upon electron irradiation.  相似文献   

8.
The interaction of O2, CO2, CO, C2H4 AND C2H4O with Ag(110) has been studied by low energy electron diffraction (LEED), temperature programmed desorption (TPD) and electron energy loss spectroscopy (EELS). For adsorbed oxygen the EELS and TPD signals are measured as a function of coverage (θ). Up to θ = 0.25 the EELS signal is proportional to coverage; above 0.25 evidence is found for dipole-dipole interaction as the EELS signal is no longer proportional to coverage. The TPD signal is not directly proportional to the oxygen coverage, which is explained by diffusion of part of the adsorbed oxygen into the bulk. Oxygen has been adsorbed both at pressures of less than 10-4 Pa in an ultrahigh vacuum chamber and at pressures up to 103 Pa in a preparation chamber. After desorption at 103 Pa a new type of weakly bound subsurface oxygen is identified, which can be transferred to the surface by heating the crystal to 470 K. CO2 is not adsorbed as such on clean silver at 300 K. However, it is adsorbed in the form of a carbonate ion if the surface is first exposed to oxygen. If the crystal is heated this complex decomposes into Oad and CO2 with an activation energy of 27 kcal/mol(1 kcal = 4.187 kJ). Up to an oxygen coverage of 0.25 one CO2 molecule is adsorbed per two oxygen atoms on the surface. At higher oxygen coverages the amount of CO2 adsorbed becomes smaller. CO readily reacts with Oad at room temperature to form CO2. This reaction has been used to measure the number of O atoms present on the surface at 300 K relative to the amount of CO2 that is adsorbed at 300 K by the formation of a carbonate ion. Weakly bound subsurface oxygen does not react with CO at 300 K. Adsorption of C2H4O at 110 K is promoted by the presence of atomic oxygen. The activation energy for desorption of C2H4O from clean silver is ~ 9 kcal/mol, whereas on the oxygen-precovered surface two states are found with activation energies of 8.5 and 12.5 kcal/mol. The results are discussed in terms of the mechanism of ethylene epoxidation over unpromoted and unmoderated silver.  相似文献   

9.
利用微分电化学质谱和电化学原位衰减全反射红外光谱技术探究了Cu和CuPd催化剂上CO2和CO的电化学还原行为. 红外光谱观察到了生成甲醇、甲烷与乙烯的CHx中间物种. 在CuPd电极CO2还原过程中,红外光谱的CO吸附峰起始电位比Cu正移大约300 mV,说明CuPd能够有效促进CO2还原;CO饱和溶液中,Cu和CuPd电极CO起始吸附电位基本相同;两电极上CO谱带出现的电位与CO32-的谱带降低的电位基本相同,说明CO的吸附需要CO32-的脱附. 利用电化学在线质谱发现在CuPd电极上CO还原产生CH4和CH3OH的起始电位比Cu电极正移约200 mV. 推测催化活性的提升可能是由于Pd的引入改变了Cu的d能带,且Pd吸附更多的H,从而促进CO2还原,使CO能够与H结合并被深度还原.  相似文献   

10.
Adsorption of pure CO2 on SBA-15 impregnated with branched polyethyleneimine (PEI) has been studied. Materials were prepared by impregnating the pore surface of SBA-15 mesoporous silica with different amounts of branched PEI (10, 30, 50 and 70 wt%). Textural properties, elemental analysis and low angle XRD measurements of the prepared samples showed a progressive pore filling of SBA-15 as PEI loading was increased. Pure CO2 adsorption isotherms on these modified SBA-15 materials were obtained at 45 °C, showing high adsorption efficiency for CO2 removal at 1 bar. Chemisorption of CO2 on amino sites of the modified SBA-15 seems to be the main adsorption mechanism. PEI content of impregnated SBA-15 influences the adsorption capacity of the material, being a relevant variable for CO2 removal by adsorption. Temperature effect on adsorption was also studied in the range 25-75 °C, showing that temperature strongly influences CO2 adsorption capacity. Adsorption capacity was also tested after regeneration of the PEI-impregnated SBA-15 materials. Our results show that these branched PEI-impregnated materials are very efficient even at low pressure and after several adsorption-regeneration cycles.  相似文献   

11.
Dissociative adsorption of CCl4 on TiO2 at 35 °C has been studied by Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and electron spin resonance. CCl4 decompose to form CO, CO2, and CO3 on the surface, at such a low temperature, in which CO2 formation is not from CO oxidation on TiO2, but CO3 can be produced by CO and CO2 adsorption. The Cl generated from CCl4 decomposition is left on the surface and bonded to titanium ions. Mineralization of CCl4 on TiO2 involves the lattice oxygens. Thermodynamical driving force and possible reaction routes for CO and CO2 formation in the CCl4 decomposition on TiO2 are discussed.  相似文献   

12.
A D2O laser has been developed for collective Thomson scattering measurements of ion temperature in high temperature plasmas. A pulse duration and a spectral width of a high power D2O laser has been successfully controlled for this purpose, by using a TEA CO2 laser injection-locked by an etalon-tuned TEA CO2 laser as a pump source.  相似文献   

13.
Laser Stark spectroscopy of the R(5, K) transitions in the ν2 band of ammonia was carried out using coincidences with the 9-μm band CO2 laser lines. We observed 22 Doppler-free resonances by using an optoacoustic detector and a Lamb-dip stabilized CO2 laser. A simultaneous analysis of sa, aa, and ss lines yields zero-field transition frequencies with an absolute accuracy of 1 ~ 2 MHz.  相似文献   

14.
High aspect-ratio Li2ZrO3 nanotubes were prepared by hydrothermal method using ZrO2 nanotubes layers as templates. Characterizations of SEM, XRD, TEM and CO2 adsorption were performed. The results showed that tetragonal Li2ZrO3 nanotubes arrays containing a little monoclinic ZrO2 can be obtained using this simple method. The mean diameter of the nanotubes is approximately 150 nm and the corresponding specific surface area is 57.9 m2 g−1. Moreover, the obtained Li2ZrO3 nanotubes were thermally analyzed under a CO2 flow to evaluate their CO2 capture property. It was found that the as-prepared Li2ZrO3 nanotubes arrays would be an effective acceptor for CO2 at high temperature.  相似文献   

15.
Adsorption of CO on Ni(100) has been investigated using secondary ion mass spectrometry (SIMS) and Auger electron spectroscopy at 175 and 295 K. Interaction with polycrystalline nickel was examined at 295, 325 and 365 K. All the secondary ions, Ni+, Ni2+, NiCO+ and Ni2CO+ show large increases in intensity as CO is adsorbed but there is no simple correlation of the secondary ion species with the sequence of linear and bridge-bonded CO species expected from electron energy loss spectroscopy. Adsorption of CO at 175 K on a hydrogen saturated Ni(100) surface, which is thought to permit only bridge-bonded adsorbed CO, does not result in any enhancement of Ni2CO+. The extent of increases in secondary ion yields after CO adsorption on the nickel surfaces are primarily related to the variations in the heat of adsorption as a function of surface coverage. The presence of more weakly-held species is important in enhancing secondary ion yields.  相似文献   

16.
胡自玉  杨宇  孙博  张平  汪文川  邵晓红 《中国物理 B》2012,21(1):16801-016801
Using first-principles calculations, we systematically study the dissociations of O2 molecules on different ultrathin Pb(111) films. According to our previous work revealing the molecular adsorption precursor states for O2, we further explore why there are two nearly degenerate adsorption states on Pb(111) ultrathin films, but no precursor adsorption states existing at all on Mg(0001) and Al(111) surfaces. The reason is concluded to be the different surface electronic structures. For the O2 dissociation, we consider both the reaction channels from gas-like and molecularly adsorbed O2 molecules. We find that the energy barrier for O2 dissociation from the molecular adsorption precursor states is always smaller than that from O2 gas. The most energetically favorable dissociation process is found to be the same on different Pb(111) films, and the energy barriers are found to be influenced by the quantum size effects of Pb(111) films.  相似文献   

17.
The heats of adsorption of different C1 and C2 molecules assumed to be present during the initial steps of the Fischer-Tropsch synthesis and activation energies for elementary steps envisioned to occur in the synthesis are calculated for Co by using the unity bond index-quadratic exponential potential (UBI-QEP) method. The preexponential factors for the elementary steps are calculated from transition-state theory, and the rate constants are calculated according to the Arrhenius equation. The activation barrier for hydrogenation of CO is found to be lower compared to hydrogen assisted dissociation of CO, which has a smaller activation barrier than direct dissociation of CO. The reaction steps with high activation barriers are eliminated. Based on this elimination two sets of elementary steps for formation of C1 and C2 alkenes and alkanes in the Fischer-Tropsch synthesis are established: one based on hydrogen assisted CO dissociation (carbide mechanism) and one based on CO hydrogenation (CO insertion mechanism). In addition, one mechanism of producing CO2 from the water-gas shift reaction is proposed. The resulting mechanisms are combined and used in the microkinetic model, which are fitted to experimental results at methanation conditions (T = 483 K or 493 K, p = 1.85 bar and H2/CO = 10) over a Co/Al2O3 Fischer-Tropsch catalyst. A good tuning is obtained by adjusting the C-Co and H-Co binding strengths. The microkinetic modelling based on these assumptions indicates that CO is mainly converted through hydrogenation of CO and that C2 compounds are mainly produced by insertion of CO into a metal-methyl bond. Thus, from the surface coverages and reaction rates predicted by the microkinetic modelling the mechanism can be further reduced to only include the CO insertion mechanism. Hydrogenation of CHO to CH2O is found to be the rate determining initiation step, and insertion of CO into a metal-methyl bond is found to be the rate determining step for chain growth. By using the UBI-QEP method for calculation of activation energies, the activation barriers for dissociation of CO and hydrogenation of surface carbon are found to be too large for the carbide mechanisms to occur. However, experimental data or another theoretical method is necessary in order to support or disprove the calculated activation energies in this work.  相似文献   

18.
Adsorption of Cs on basal planes of MoS2 has been studied with LEED, Auger and work function measurements. LEED observations show that in the 200–300 K range Cs is adsorbed as amorphous layers on MoS2. Correlation of Auger and work function measurements indicates that the work function, sticking coefficient and the maximum density of Cs that can be deposited on the MoS2 surface depend strongly on substrate temperature. Cesium is deposited on MoS2 in two adsorption states. Although MoS2 is extremely inert to O2 adsorption, the presence of Cs causes a drastic increase in the adsorption of oxygen which in turn increases the amount of Cs that can be deposited on the surface. Lastly, it has been found that part of the Cs adatoms are diffused into the bulk of MoS2.  相似文献   

19.
The SO2 adsorption capacity of K2CO3-impregnated activated carbons, prepared by soaking carbon in large volumes of K2CO3 in solution of various concentrations, varies linearly with respect to the loading of K2CO3 on the carbon up to about 12% K2CO3 by weight. Above 12%, the capacity for SO2 levels out and then decreases. This suggests that at high loadings the K2CO3 either aggregates and/or blocks pores of the activated carbon. In contrast, the adsorption capacity of carbons prepared by repeatedly (maximum of three times total) loading K2CO3 via incipient wetness is much larger than that of the soaked samples, up to 70% more, when the loading of K2CO3 is greater than 12%. Static and dynamic adsorption, DSC, SEM, EDX and incipient wetness studies of the samples show that the impregnant aggregates but does not block carbon pores.  相似文献   

20.
We have studied the adsorption and desorption of thiophene on polycrystalline UO2 as function of coverage, over the temperature range 100-640 K, using X-ray photoelectron spectroscopy (XPS), temperature programmed desorption (TPD) and electron stimulated desorption (ESD). Thiophene is found to adsorb molecularly on stoichiometric UO2. C 1s and S 2p XPS spectra are measured at different thiophene exposures and at different temperatures; they show no evidence for the presence of dissociation fragments, confirming that thiophene adsorbs and desorbs molecularly on a polycrystalline stoichiometric UO2 surface. The variation of the S 2p and C 1s intensity as function of exposure, together with ESD measurements of O+ as function of exposure, can be connected to the growth mode of a thiophene film on UO2; the thiophene film converts from a flat-lying configuration to an inclined structure as coverage increases. The effects of X-rays, UV, and electron irradiation on thiophene films have been studied in two different coverage regimes, monolayer and multilayer. Irradiation leads to a modification of thiophene films, and appreciable concentrations of species stable to 640 K are present on the surface for both regimes. The XPS results suggest that irradiation induces polymerization and oligomerization, as well as formation of thiolates and dissociation fragments of thiophene. The adsorption and reactivity of thiophene on defective UO2 surfaces have also been studied. The O vacancies and defects in the oxide surface cause cleavage of C-H and C-S bonds leading to the dissociation of thiophene at temperatures as low as 100 K. These results illustrate the important role played by O vacancies in the chemistry of thiophene over an oxide surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号