首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
悬浮液进样原子吸收光谱分析中样品的粒径效应   总被引:10,自引:0,他引:10  
研究了悬浮液进样 FAAS和悬浮液进样 GFAAS中样品粒径效应。实验表明 ,悬浮液颗粒粒径 <30 μm能满足石墨炉原子化测定需要 ,而火焰原子化要求在粒径≤ 5 μm的前提下 ,再根据待测元素的性质选择合适的火焰类型 ,方能达到较满意的测定效果。  相似文献   

2.
The adsorption of five acidic dyes on chitosan—a by-product from waste crustacean shell—has been studied. The equilibrium data have been studied using Langmuir, Freundlich and Redlich-Peterson equations. The best correlations are obtained using the Langmuir isotherm suggesting the mechanism involves one process step of dyes complexing with the free amino group. The effect of chitosan particle size was investigated and showed an increase in adsorption capacity with decreasing particle size indicating that the available external surface was an important factor. Increasing solution temperature resulted in an increase in adsorption capacity indicating an exothermic process with a negative ΔH. Finally, the effect of varying the percentage degree of deacetylation showed that from 52% to 97% resulted in decrease in the dye adsorption capacity suggesting that more amorphisation may cause changes in the internal structure of chitosan and reduce the capacity.  相似文献   

3.
以CuSO4.5H2O和NaOH为原料制备0.1mol·L-1CuSO4溶液和4mol·L-1NaOH溶液,采用沉淀法制备Cu(OH)2纳米粉末,然后分别在200℃,500℃,900℃温度下分解Cu(OH)2得到不同粒度的氧化铜粉体.在氢气中,以15℃.min-1升温速率,用SDT2960Simulta-neousDSC-TGA差热-热重分析仪测定TG-DTA曲线,并进行动力学计算.结果表明:氧化铜粉体的形貌近似为球形,粒径分别为50,150,400nm;DTA峰值温度分别为258.90℃,279.17℃,364.80℃,随粒径的增大而提高;表观活化能分别为173.39,461.54,534.80kJ·mol-1,随粒径的增大而增大;频率因子分别为1.15×1018,2.49×1045,2.54×1045,随粒径的增大而增大;反应级数分别为1.16,1.15,1.03,随粒径的增大而减少.  相似文献   

4.
By UV-excited photoelectron emission microscopy (UV-PEEM) we investigated the microscopic growth behavior of organic thin films using 3,4,9,10-perylene-tetracarboxylicacid dianhydride (PTCDA) on a Ag(1 1 1) single crystal substrate as example. Direct, real time observation allows to correlate the initial growth modes and the related kinetic parameters with substrate properties like terrace width, step density, and step bunches from the submonolayer range up to 5 layers or more. Above room temperature PTCDA grows in a Stranski–Krastanov fashion: after completion of the first two stable layers three-dimensional islands are formed. The nucleation density strongly depends on the temperature and the substrate morphology thus affecting the properties of the organic film.  相似文献   

5.
The behaviour of the transients due to the model of the growth of right-circular cones is fully explored and compared to that of hemispheroids. The conditions that justify the use of the limiting forms of the transient equations for the so-called ‘instantaneous’ and ‘progressive’ nucleation processes are evaluated. Nucleation rates obtained from the fit of the recorded transients to the generalised equations derived for both growth models are compared. It is shown that even in those cases where electrocrystallisation proceeds via nucleation and growth of hemispheroids, analysis of the transients according to the model of the growth of cones results in estimates of nucleation rates which differ by at most a factor of three, and in most cases are as close as half the actual value.  相似文献   

6.
We report a spectroscopic and microscopic investigation of the synthesis of gold nanoparticles (AuNPs) with average sizes of less than 5 nm. The slow reduction and AuNP formation processes that occur by using 9-borabicyclo[3.3.1]nonane (9-BBN) as a reducing agent enabled a time-dependent investigation based on standard UV-vis spectroscopy and transmission electron microscopy (TEM) analyses. This is in contrast to other borohydride-based syntheses of thiolate monolayer protected AuNPs which form particles very rapidly. We investigated the formation of 1-octadecanethiol (ODT) protected AuNPs with average diameters of 1.5-4.3 nm. By studying the progression of nanoparticle formation over time, we find that the nucleation rate and the growth time, which are interlinked with the amount of ODT and the temperature, influence the size and the size dispersion of the AuNPs. High-resolution TEM (HRTEM) analyses also suggest that the nanoparticles are highly single crystalline throughout the synthesis and appear to be formed by a diffusion-controlled Ostwald-ripening growth mechanism.  相似文献   

7.
Effect of particle size on pyrolysis characteristics of Elbistan lignite   总被引:1,自引:1,他引:0  
In this study, the relationship between particle size and pyrolysis characteristics of Elbistan lignite was examined by using the thermogravimetric (TG/DTG) and differential thermal analysis (DTA) techniques. Lignite samples were separated into different size fractions. Experiments were conducted at non-isothermal conditions with a heating rate of 10°C min−1 under nitrogen atmosphere up to 900°C. Pyrolysis regions, maximum pyrolysis rates and characteristic peak temperatures were determined from TG/DTG curves. Thermogravimetric data were analyzed by a reaction rate model assuming first-order kinetics. Apparent activation energy (E) and Arrhenius constant (A r) of pyrolysis reaction of each particle size fraction were evaluated by applying Arrhenius kinetic model. The apparent activation energies in the essential pyrolysis region were calculated as 27.36 and 28.81 kJ mol−1 for the largest (−2360+2000 μm) and finest (−38 μm) particle sizes, respectively.  相似文献   

8.
A series of anionic water-borne polyurethane and polyurethane/polyacrylate dispersions and their paint films was prepared. It was found by using TEM that there were three phases in the polyurethane/polyacrylate film, i.e. the hard segment-rich phase and the soft segment-rich phase of polyurethane, and the polyacrylate phase. By increasing the content of urea groups, the glass transition temperature of the soft segments and the dissociation temperature of the long-distance ordering of the hard segments were raised. This should mean that the motion of macromolecular chains was hindered by increasing the content of urea groups, and the hydrophilic carboxyl groups embedded initially in macromolecular coils could thus not transfer easily to the particle surface, which resulted in a greater average particle size in the dispersion.  相似文献   

9.
The kinetics of the separate reaction steps, corresponding to the stepwise redox mechanism of ethylene oxidation over silver, was studied. The results are used for the interpretation of the kinetics of overall catalytic reactions by taking into account an influence of the adsorption of oxygen on the surface properties of silver.  相似文献   

10.
Thermal treatment of pure nanoscale maghemite (γ-Fe2O3) powders under argon yields different products depending on particle size. Particles with a mean diameter above 15 nm transform to hematite (-Fe2O3). Smaller particles, which were synthesised under identical conditions but from solutions with lower Fe3+ concentrations, transform into magnetite (Fe3O4) during thermal treatment. This phenomenon can be explained by adsorbed or incorporated reducing carboxylate groups. The origin of the reducing species and possible reaction mechanisms with the maghemite particles are discussed.  相似文献   

11.
Fourier transform infrared (FTIR) spectroscopy using attenuated total reflection (ATR) is commonly used for the examination of bone. During sample preparation bone is commonly ground, changing the particle size distribution. Although previous studies have examined changes in crystallinity caused by the intensity of grinding using FTIR, the effect of sample preparation (i.e. particle size and bone tissue type) on the FTIR data is still unknown.This study reports on the bone powder particle size effects on mid-IR spectra and within sample variation (i.e. periosteal, mesosteal, trabecular) using FTIR-ATR. Twenty-four archaeological human and faunal bone samples (5 heated and 19 unheated) of different chronological age (Neolithic to post-Medieval) and origin (Belgium, Britain, Denmark, Greece) were ground using either (1) a ball-mill grinder, or (2) an agate pestle and mortar, and split into grain fractions (>500 μm, 250–500 μm, 125–250 μm, 63–125 μm, and 20–63 μm).Bone powder particle size has a strong but predictable effect on the infrared splitting factor (IRSF), carbonate/phosphate (C/P) ratio, and amide/phosphate (Am/P) values. The absorbance and positions of the main peaks, the 2nd derivative components of the phosphate and carbonate bands, as well as the full width at half maximum (FWHM) of the 1010 cm−1 phosphate peak are particle size dependent. This is likely to be because of the impact of the particle size on the short- and long-range crystal order, as well as the contact between the sample and the prism, and hence the penetration depth of the IR light. Variations can be also observed between periosteal, cortical and trabecular areas of bone. We therefore propose a standard preparation method for bone powder for FTIR-ATR analysis that significantly improves accuracy, consistency, reliability, replicability and comparability of the data, enabling systematic evaluation of bone in archaeological, anthropological, paleontological, forensic and biomedical studies.  相似文献   

12.
In order to quantitatively predict nano- as well as other particle-size distributions, one needs to have both a mathematical model and estimates of the parameters that appear in these models. Here, we show how one can use Bayesian inversion to obtain statistical estimates for the parameters that appear in recently derived mechanism-enabled population balance models (ME-PBM) of nanoparticle growth. The Bayesian approach addresses the question of “how well do we know our parameters, along with their uncertainties?.” The results reveal that Bayesian inversion statistical analysis on an example, prototype nanoparticle formation system allows one to estimate not just the most likely rate constants and other parameter values, but also their SDs, confidence intervals, and other statistical information. Moreover, knowing the reliability of the mechanistic model's parameters in turn helps inform one about the reliability of the proposed mechanism, as well as the reliability of its predictions. The paper can also be seen as a tutorial with the additional goal of achieving a “Gold Standard” Bayesian inversion ME-PBM benchmark that others can use as a control to check their own use of this methodology for other systems of interest throughout nature. Overall, the results provide strong support for the hypothesis that there is substantial value in using a Bayesian inversion methodology for parameter estimation in particle formation systems.  相似文献   

13.
A delicate system, that is, in situ photoreduced silver metal nanoparticles (NPs) formed from a combination of Ag(+) complexes with L- or D-cysteine, enables the introduction of chirality. This chirality is essentially programmed by a synergetic interplay between the CO(2)(-) and NH(3)(+) groups on cysteine, rather than the formation of a chiral metal core (see figure).  相似文献   

14.
Homogeneous doped ZnO nanoparticles were synthesised by the Pechini method. A statistical experimental design was used to study the effects of the synthesis method variables on the particle size. The variables were the molar ratios of the reagents and the calcination temperature. The results indicated that the calcination temperature was the only factor that had a significant effect on the particle size. The particle size of ZnO varied between 16 and 76 nm with calcination temperatures of 400–800 °C. The homogeneity was studied by the ICP-MS technique, and the powders were found to be highly homogeneous.  相似文献   

15.
This paper discusses the effect of particle size (from under 45 to 425 μm), sample concentration (5 and 50% dilution in KBr) and the presence/absence of anti-graffiti coatings on the quality of diffuse reflectance spectra, specifically the spectra for limestone, granite and brick. In limestone, sample dilution was found to affect spectral resolution significantly, whereas the increase in particle size leads to a slight decrease in signal intensity. The presence of anti-graffiti protection was the factor that disturbed spectral quality most visibly, except in very dilute (5%) samples with a very fine particle size (under 45 μm). In more heterogeneous materials such as brick and granite, particle size proved to have a greater impact than dilution, while the presence of protective treatment was again the parameter with the greatest effect on quality and consequently signal reproducibility. This effect was slighter in very dilute samples with a small particle size.  相似文献   

16.
The aim of the present study is to evaluate the influence of resin particle sizes on the rate of ions release from a mixture of ion-exchange resins (named NMTD) which supplies calcium, fluoride, and phosphate ions as the main mineral content, and to elucidate the different phenomena taking place through the related ion-exchange process. The final goal of the study, related to dental application (enamel restoration), is to limit the particle size range, since the rate of ion release is a key parameter in the successful achievement of such objective. Weak-type ion-exchange resins, loaded with the appropriate ions, were ground and sieved into granulometric fractions of bead diameters of 0.1–0.075, 0.075–0.063, and 0.063–0.05 mm. Particle size was controlled by a laser diffraction particle distribution analyzer. The experiments on the kinetics of ions release were carried out under batch conditions in artificial saliva desorption solution thermostatized at 37 °C. The release of Ca2+ and F was determined by corresponding ion-selective electrodes automatically controlled, whereas H2PO4 was measured spectrophotometrically by the inductively coupled plasma–optical emission technique (ICP-OES). The results of this study show that the process of ion-exchange for the different particle size fractions of resins is critical for the study of the kinetics release of the ions immobilized in the corresponding mixed bed polymeric matrices. In fact, despite the apparent narrow range of particle sizes of the mixed bed systems studied, appreciable differences in the rate of ions release are obtained. Since the ion release rate is depending on the contact surface, an increase of factor of 2 in particle size represents an increase of an order of magnitude of the resin contact surface due to the resin porosity. In this concern, it has been observed that the rate of ions release increases when particle size decreases. The interactions occurring during the ion release from the mixed bed resins (containing calcium-, fluoride-, and phosphate-loaded resins) can be interpreted by the following phenomena: H2PO4, which hardly modifies its rate of release in the presence of Ca2+ and F in the mixture, promotes a considerable increase in the rate of Ca2+ release due to the formation of a calcium dihydrogen phosphate soluble complex. F also produces an acceleration in the rate of Ca2+ release due to the formation of solid CaF2 on the surface of cationic resin particles, which in contrast leads to a decrease in the rate of F release.  相似文献   

17.
In this investigation, HAp powders were synthesized using the wet chemical precipitation technique. The temperature of the heat treatment (80 °C, 120 °C, and 160 °C) and the addition of glutamic acid were the considered process parameters. After the reaction between the precursors calcium nitrate [Ca(NO3)2] and ammonium phosphate [(NH4)H2PO4], decantation of the residue, drying, and finally, heat treatment of the residue were done sequentially. X-ray diffraction (XRD) analysis, scanning electron microscope (SEM) observations, and X-ray fluorescence (XRF) analysis were carried out to characterize the synthesized HAp powders. It was found that at a high heat treatment temperature plus the addition of glutamic acid are suitable process parameters to acquire uniform HAp powders with plate morphology and fibers with an average particle size of ~100–200 µm. The Ca/P ratio obtained was like the hydroxyapatite present in the bones in the order of 1.72. This situation can be indicated as an essential advantage in the biocompatibility of the synthesized material. The use of glutamic acid suggests crystal growth in a preferential direction as reported in our previous work. The manufacture of hydroxyapatite, especially in powder, is of great interest in developing additive manufacturing systems for the biomedical market.  相似文献   

18.
聚合物乳液成膜过程可分为介质蒸发、颗粒形变和相邻颗粒间高分子的扩散融合三个阶段.一般认为,环境温度达到或高于高分子的玻璃化转变温度(Tg)时颗粒才可能发生形变.Goudy等研究了粒径为0.24~1.05μm的聚苯乙烯(PS)胶乳的成膜过程,发现PS颗粒在368K(Tg约373K)热处理很长时间也不发生形变,而在378K热处理后,粒径较小的颗粒融合速度快于较大颗粒.  相似文献   

19.
CO2催化加氢转化成高附加值化学品如低碳烯烃(C2=–C4=)等是减少碳排放的有效途径之一.采用金属氧化物/分子筛双功能催化剂可以实现CO2加氢直接高选择性合成C2+碳氢化合物.通常认为,金属氧化物组分可以活化CO2转化为甲醇等含氧中间体,该中间体在分子筛孔道内进一步转化为各种烃.氧化铟(In2O3)/SAPO-34双功能催化剂由于具有出色的催化CO2加氢制低碳烯烃反应性能而备受关注,然而,仍需进一步提升催化剂的催化性能以推动该反应的工业应用.目前,氧化物的结构与双功能催化剂性能之间的关系还不明确,这不利于其催化性能的改善.现有关于金属氧化物纳米粒子的尺寸(特别是小于23 nm)效应及其对双功能催化CO2加氢反应的活性和产物分布的影响的报道较少,对此深入理解将有利于设计更高性能的催化剂.本文采用沉淀法,通过控制焙烧温度得到了一系列尺寸为7~28 nm的立方相In2O3,通过多种表征手段探究了In2O3的尺寸对其结构与表面化学性质的影响.结果表明,随着In2O3晶粒尺寸的减小,其氧空位数目、CO2、H2与NH3吸附量以及Lewis较强酸性位比例均逐渐增加.在350oC,3 Mpa,9000 mL·gcat–1·h–1和H2/CO2比为3的反应条件下,研究了In2O3/SAPO-34双功能催化剂中In2O3粒径对其催化CO2加氢制低碳烯烃反应性能的影响.结果表明,随着双功能催化剂中In2O3尺寸的增大,低碳烯烃(尤其是丙烯)选择性、收率及烯烃与烷烃比例均先升高后降低,在尺寸为19 nm的In2O3上达到最大值,分别为76.9%、12.3 mmol goxide–1 h–1和4.8.较小尺寸的In2O3虽然具有较大的比表面积和更多的氧空位,并为CO2和H2的活化提供了更多的活性位,但小于19 nm的颗粒更容易烧结;In2O3的尺寸还会影响其与SAPO-34的协同效应,进而影响双功能催化剂的催化活性.此外,相对于其它尺寸的In2O3,19 nm的In2O3更有利于甲醇中间体的生成.因而19 nm In2O3耦合SAPO-34的双功能催化剂性能最好,其催化CO2转化率最高,为14.1%.综上,适中尺寸的In2O3能够促进In2O3/SAPO-34上CO2加氢制低碳烯烃反应.这些结果为通过平衡结构稳定性和催化性能来设计更有效的催化CO2转化的复合催化剂提供了理论指导.  相似文献   

20.
魏坤  彭珊珊  石燕 《化学学报》1998,56(8):780-784
研究了纳晶氧化物Dy~1~-~xSr~xCoO~3~-~y(x=0.6)的等温烧结动力学,计算了烧结激活能, 结果表明: 在烧结初期, 致密化机制主要为蒸发-凝聚传质; 在烧结中期, 致密化机制转为晶界控制。烧结过程的激活能为5.255×10^4J·mol^-^1。较小的激活能体现了纳米粒子的尺寸效应。快速运动的晶界, 导致晶界与气孔的运动速度不匹配, 造成纳晶氧化物密度低, 最终形成纳米海绵态网络结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号