首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Songmei Hou  Hongbo He  Hongtu Xie 《Talanta》2009,80(2):440-384
Determination of amino acids by mass spectrometry (MS) is an important technique to investigate soil nitrogen transformation and cycling as amino acids being the major nitrogen-containing compounds in soil organic matter. However, researchers have long faced a critical problem in coupling an efficient separation technique to a sensitive MS detection system simultaneously. In this context, we established a new method of liquid chromatography coupled to mass spectrometry based on the 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) derivatization method for convenient and accurate quantification of amino acids in soil samples. Baseline separation of 17 amino acid AQC-derivatives was achieved on an XTerraR MS C18 column using ammonium formate as a mobile phase modifier. The concentration of ammonium formate and the pH of the mobile phase were optimized in order to obtain sensitive MS signals. The response curves were linear over the range of 50-800 μmol L−1 amino acids. The detection limits were 0.20-0.60 pmol μL−1 on column and 0.07-0.24 μg g−1 soil under the optimized conditions. The method has been applied successfully for the first time to determine amino acids in 4 types of soil samples, in which 15 amino acids were quantified by MS detector but methionine and cystine were below the detection limits. Both the recovery and the precision were satisfactory. Hence, this proposed technique shows a potential for the identification of amino acids in soil as well as tracing the transformation of soil amino acids with isotope dilution technique in nitrogen cycling investigation.  相似文献   

2.
A precolumn derivatization method for the determination of amino acids using 6-aminoquinolyl-N-hyroxy-succinimidyl carbamate (AQC) followed by high-performance liquid chromatography is described. Ultraviolet detection was used for the assay of AQC derivatives of amino acids with the detection wavelength set at 248 nm. The reagent peak interference was minimized by optimizing the pH of the eluent and the gradient elution profile to improve the resolution between the reagent peak and amino acid derivatives. All nineteen amino acids were separated in 35 min with resolutions 1.6. The correlation coefficients of the calibration graphs for seventeen amino acids were fairly good (r 0.9999) at concentrations of 25–500 μM. The detection limits for all common amino acids including cystine and trytophan were at the range of 0.07–0.3 pmol. Good reproducibility and accuracy of the method were demonstrated by the determination of amino acids in three typical kinds of samples (protein, peptide and feed.) The average relative standard deviations for bovine serum albumin (BSA) and neuromedin were 0.86% and 1.36, respectively, and the average relative errors were 3.2% and 2.3%, respectively. The results of the analysis of feed hydrolysates agreed with those obtained by an ion-exchange method and the average recovery of the method for feed hydrolysates was 98%.  相似文献   

3.
沈丽  王超  陈静  杨雪 《分析测试学报》2017,36(9):1093-1098
采用超高效液相色谱-四极杆/静电场轨道阱高分辨质谱联用技术(UHPLC-Quadrupole/Orbitrap MS)结合柱前衍生法建立了可同时测定28种游离氨基酸的分析方法,并对十字花科植物中的游离氨基酸进行检测和分析。样品用超纯水提取后,经6-氨基喹啉基-N-羟基琥珀酰亚胺基甲酸酯(AQC)衍生,采用Waters BEH C18柱作为色谱柱,以pH 5.0乙酸铵缓冲溶液和80%乙腈水溶液作为流动相进行梯度洗脱。质谱检测器采用电喷雾离子源,在正离子模式下进行检测。实验结果表明,十字花科植物中含有25种以上游离氨基酸,其中包括人体必需的8种氨基酸。25种氨基酸在线性范围内相关性良好,平均加标回收率为80.5%~104.4%,相对标准偏差为0.6%~4.4%。不同氨基酸检测灵敏度不同,定量下限为0.01~1.45μmol/L。该方法杂质干扰小,分析速度快,灵敏度高,适用于植物样品中游离氨基酸的同步检测。  相似文献   

4.
陈丽梅  尚艳芬  赵孟彬  刘虎威 《色谱》2010,28(12):1154-1157
建立了一种6-氨基喹啉基-N-羟基琥珀酰亚氨基甲酸酯(AQC)柱前衍生,超高效液相色谱(UPLC)对酱油中18种氨基酸进行快速分离检测的方法。采用BEH C18色谱柱分离,在260 nm波长下检测,以乙酸铵-乙酸-乙腈-水和乙腈-乙酸为流动相,将流动相梯度和流速梯度相结合,在12 min内实现了18种氨基酸衍生物的分离。方法的线性回归系数(r2)均大于0.999,检出限为0.032~0.12 mg/L,日间相对标准偏差(RSD)为0.72%~4.05%,在酱油中18种氨基酸的加标回收率为90.2%~103.7%。该方法前处理过程简单,分离时间短,是检测酱油中氨基酸的有效手段,可用于酱油的质量评定。  相似文献   

5.
This paper describes the preparation of new dress-up columns featuring reproducibly removable and replaceable chiral stationary phases. After synthesizing perfluroalkylated quinine and quinidine derivatives as chiral stationary phase compounds (F-CSPs), we adsorbed them reversibly onto a fluorous LC column through pumping of their solutions. Using this dress-up chiral column and fluorophobic elution of aqueous ammonium formate/MeOH mixtures, we could enantioseparate four racemic N-acetyl amino acids, dichlorprop, and sixteen fluorescent 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC)-derivatized amino acids. Dressing and undressing of the coated F-CSPs could be controlled by varying the fluorophilicity and fluorophobicity of the eluent. The relative standard deviations of the retention times, the retention factors, the number of theoretical plates, the enantioseparation factors, and the resolutions of each of four preparations of such dress-up columns were all less than or equal to 5.26% (from 20 repeated analyses); the reproducibilities from four different preparations were all less than or equal to 10.6%. These columns also facilitated highly sensitive and selective analyses of AQC-amino acids when detected using LC–MS/MS.  相似文献   

6.
The retention behavior of several series of free α‐ and ω‐amino acids and positional isomers of amino pentanoic acid in the hydrophilic interaction chromatography mode (HILIC) was studied. The study was carried out on three stationary phases followed by post‐column derivatization with fluorescence detection in order to describe the retention mechanism of the tested amino acids. The effect of chromatographic conditions including acetonitrile content in the mobile phase, mobile phase pH (ranging from 3.5 to 6.5) and concentration of buffer in the mobile phase was investigated. The effect of the number of carbon atoms (nC) in aliphatic chains of the individual homologue of α‐ and ω‐amino acids and the logarithm of the partition coefficient (logD) on retention was also a part of the presented study. A good correlation (r > 0.98) between the logk and logD values of amino acids or nC, respectively, was observed. The described linear relationships were subsequently applied to predict the retention behavior of individual members of the homologous series of amino acids and to optimize the mobile phase composition in HILIC. The obtained results confirmed that the retention mechanism of α‐amino acids, ω‐amino acids and positional isomers of amino acids was based on the logD values and the number of carbon atoms in the aliphatic chains of amino acids. The elution order of ω‐amino acids and positional isomers of amino pentanoic acid was strongly dependent on the mobile phase pH in the investigated range whereas the retention factors of all α‐amino acids remained essentially unchanged on all tested stationary phases.  相似文献   

7.
The simultaneous determination of amino acids including trytophan is described. The NBD- F forms a single adduct with tryptophan as with other amino acids, but the adduct lacks intrinsic fluorescence. After ultraviolet irradiation, the adduct fluoresces (pale-green); the fluorescence intensity increases with increasing irradiation time at pH 2-10, Under the same conditions, the other amino acid adducts are slowly decomposed. When the tryptophan adduct, separated on a Nucleosil ODS column (150×4.6 mm, 6 μm), is irradiated in an on-line photochemical reactor (310 nm), its fluorescence peak appears between those of the phenylalanine and lysine adducts. The detection limit for tryptophan by the proposed method is 3 pmol; the limits for other amino acids are 10–100 fmol.  相似文献   

8.
9.
《Analytical letters》2012,45(1):68-83
Abstract

A simple and reliable high-performance liquid chromatographic (HPLC) method was developed for the determination of belotecan in the plasma, urine, and bile samples of rats. Belotecan was analyzed with HPLC using a C18 column with fluorescence detector. A mixture of acetonitrile–0.1 M potassium phosphate buffer at pH 2.4 (25:75, v/v) and 0.2% trifluoroacetic acid was used as the mobile phase. The lower limits of quantitation (LOQ) were 5 ng mL?1 for the plasma and 5 µg mL?1 for the urine and bile samples. The method has been readily applied for the routine pharmacokinetic study of belotecan in small laboratory animals.  相似文献   

10.
Summary Microcystins-LA,-LR,-RR,-YR and nodularin, cyanobacterial peptide toxins, were separated by internal-surface reversed-phase (ISRP), high-performance liquid chromatography. The capacity factors of the toxins were measured in the range pH 2–8 using acetonitrile, isopropanol or tetrahydrofuran in potassium dihydrogenphosphate mobile phase. The main retention mechanism of the ISRP column was reversed-phase interaction but cation-exchange offered additional selectivity at neutral and slightly acidic pH. At neutral pH (10% modifier, 0.1 M buffer) the elution order was microcystin-LA (two nonpolar residues leucine and alanine as the variable amino acids), nodularin, microcystin-LR,-YR and-RR (two basic arginines as the variable amino acids). The retention times of all toxins except microcystin-RR were substantially longer at acidic pH. At pH 2 (10% modifier, 0.1 M buffer) where the cation-exchange mechanism was inoperative the elution order was changed to microcystin-RR, nodularin, microcystin-LR,-YR and-LA. The best separation was achieved at pH 2 where even two desmethylated microcystin-RR analogs could be separated from microcystin-RR.  相似文献   

11.
A simple, rapid and accurate high‐performance liquid chromatography method with ultraviolet–visible detection was developed for the determination of five amino acid neurotransmitters – aspartate, glutamic acid, glycine, taurine and γ‐aminobutyric acid – in rat hippocampi with pre‐column derivatization with 4‐fluoro‐7‐nitrobenzofurazan. Several conditions which influenced derivatization and separation, such as pH, temperature, acetonitrile percentage mobile phase and flow rate, were optimized to obtain a suitable protocol for amino acids quantification in samples. The separation of the five neurotransmitter derivatives was performed on a C18 column using a mobile phase consisting of phosphate buffer (0.02 mol/L, pH 6.0)–acetonitrile (84:16, v/v) at a flow rate of 1.0 mL/min with the column temperature at 30°C. The detection wavelength was 472 nm. Without gradient elution, the five neurotransmitter derivatives were completely separated within 15 min. The linear relation was good in the range from 0.50 to 500 µmol/L, and the correlation coefficients were ≥0.999. Intra‐day precision was between 1.8 and 3.2%, and inter‐day precision was between 2.4 and 4.7%. The limits of detection (signal‐to‐noise ratio 3) were from 0.02 to 0.15 µmol/L. The established method was used to determine amino acid neurotransmitters in rat hippocampi with satisfactory recoveries varying from 94.9 to 105.2%. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
A new high-performance liquid chromatographic method is described for the determination of fatty acids in seed oils. The method was based on precolumn derivatization with 9-fluorenylmethyl chloroformate as a labeling agent and fluorescence detection. Fatty acids were extracted from the samples and subjected to derivatization with the reagent at 60°C for 10?min. The chromatographic separation of 14 fatty acids (C10–C22) was achieved on a combined loading compression octadecyl sulfate (CLC-ODS) column with a run time of 30?min. Three-step gradient elution of a mobile phase consisted of acetonitrile and water was used, and the signal was monitored at excitation and emission wavelengths of 265 and 315?nm, respectively. The method indicated favorable sensitivity and reproducibility for fatty acids’ derivatives. The detection limits, at a signal-to-noise ratio of 3, were 0.01–0.05?µg/ml and relative standard deviations (RSDs) were less than 0.27%. Excellent linear responses were observed with coefficients of 0.9995. This method was applied to quantify fatty acids in white, brown, and black sesame seeds’ oil.  相似文献   

13.

A simple method using reversed phase high-performance liquid chromatography (RP-HPLC) was developed for the simultaneous analysis of 13 amino acids. Amino acids were pre-column derivatized with 9-fluorenylmethyl chloroformate (FMOC-Cl) before analysis by RP-HPLC. Experimental parameters affecting the derivatization and chromatographic separation were investigated. Amino acids were derivatized with FMOC-Cl under alkaline condition in 0.1 mol/L borate buffer pH 10.0 at room temperature. The FMOC-amino acid derivatives were separated on an Atlantis C18 column under the gradient elution of 0.05 % trifluoroacetic acid and acetonitrile and UV detection at 265 nm. Linear ranges were 0.2–100.0 μg/mL with the correlation coefficients greater than 0.992. Limits of detection and limits of quantitation were in the range of 0.05–2.0 and 0.2–5.0 µg/L, respectively. The intra-day precision (n = 3) of retention time was less than 1 %, while for the peak area was less than 4 %. The inter-day precision (n = 3 × 3) of retention time was less than 2 % and the peak area was less than 8 %. This method was applied in honey samples and the results showed that proline is the major amino acids in honey samples.

  相似文献   

14.
Elution profiles of kynurenic acid (KYNA) and 7‐chlorokynurenic acid (Cl‐KYNA) were examined by high‐performance liquid chromatography (HPLC) using a triazole‐bonded stationary phase column (Cosmosil® HILIC) under isocratic elution of a mobile phase consisting of CH3CN–aqueous 10 mm ammonium formate between pH 3.0 and 6.0. The capacity factors of KYNA and Cl‐KYNA varied with both the CH3CN content and the pH of the mobile phase. The elution order of KYNA and Cl‐KYNA was reversed between the CH3CN‐ and H2O‐rich mobile phases, suggesting that hydrophilic interactions and anion‐exchange interactions caused retention of KYNA and Cl‐KYNA in the CH3CN‐ and H2O‐rich mobile phases, respectively. The present HPLC method using a triazole‐bonded column and fluorescence detection (excitation 250 nm, emission 398 nm) was applied to monitor in vitro production of KYNA from d ‐kynurenine (d ‐KYN) by d ‐amino acid oxidase (DAO) using Cl‐KYNA as an internal standard. A single KYNA peak was clearly observed after enzymatic reaction of d ‐KYN with DAO. Production of KYNA from d ‐KYN was suppressed by the addition of commercial DAO inhibitors. The present HPLC method can be used to evaluate DAO activity and DAO inhibitory effects in candidate drugs for the treatment of schizophrenia. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
A rapid ultra-high performance liquid chromatography (UHPLC) protocol for the determination of amino acids as their respective 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) derivatives was successfully applied for assessing free amino acid levels in commercial cheese samples representing typical product groups (ripening protocols) in cheesemaking. Based on the Waters AccQ.Tag? method as a high performance liquid chromatography (HPLC) amino acid solution designed for hydrolyzate analyses, method adaptation onto UHPLC was performed, and detection of AQC derivatives was changed from former fluorescence (λ Ex 250 nm/λ Em 395 nm) to UV (254 nm). Compared to the original HPLC method, UHPLC proved to be superior by facilitating excellent separations of 18 amino acids within 12 min only, thus demonstrating significantly shortened runtimes (>35 min for HPLC) while retaining the original separation chemistry and amino acid elution pattern. Free amino acid levels of the analyzed cheese samples showed a high extent of variability depending on the cheese type, with highest total amounts found for original Italian extra-hard cheeses (up to 9,000 mg/100 g) and lowest for surface mold- or bacterial smear-ripened soft cheeses (200–600 mg/100 g). Despite the intrinsic variability in both total and specific concentrations, the established UHPLC method enabled reliable and interference-free amino acid profiling throughout all cheese types, thus demonstrating a valuable tool to generate high quality data for the characterization of cheese ripening.  相似文献   

16.
A new liquid chromatographic method was developed for simultaneous determination of the widely used oral antidiabetic, metformin hydrochloride with antidiabetics comprising the meglitinides class in bulk, laboratory-prepared mixtures and pharmaceutical products. It was applied in the presence of metformin-reported impurity (1-cyanoguanidine). It was also applied for the determination of repaglinide in the presence of its related compounds. Chromatographic separation was achieved with isocratic elution mode using a mobile phase of acetonitrile: 0.01 M sodium dihydrogen phosphate (pH: 2.8) (67:33; v/v) flowing through a LiChrospher NH2 (amino) Agilent® column (250 × 4.6 mm—5 µm) at a rate of 0.8 mL/min at ambient temperature in a run time of 4 min. UV detection was carried out at 220 nm. The method was validated according to International Conference on Harmonization guidelines. Linearity, accuracy and precision were satisfactory over concentration ranges (µg/mL): 3.5–350 for metformin hydrochloride, 14–140 for nateglinide, 1–100 for mitiglinide calcium and 0.1–100 for repaglinide. Coefficients of determination were ?0.99 for all analytes. Limits of quantification were found (in µg/mL): 0.06, 0.08, 0.198 and 0.029 for metformin hydrochloride, nateglinide, mitiglinide calcium and repaglinide, respectively. The present method was found to be rapid, selective, economic and simple in operation satisfying the chromatographers’ needs for quality assessment of pharmaceutical products.  相似文献   

17.
The retention behaviour of amino acids was studied in hydrophilic LC on zwitterionic stationary phases. Evaluation of the influences of acetonitrile/water content, ammonium acetate (NH4Ac) concentration and mobile phase pH values was performed. Fourteen amino acids were tested and they were all retained to varying extents, with poorer retention in high water content eluents. The linear relationship between the logarithm of retention factor and log(water content) indicated that adsorption dominated or at least was partly involved in the separation mechanism. Electrostatic and hydrophilic interactions also contributed to the retention of these amino acids under different separation conditions with various mobile phase pH values and NH4Ac concentrations. Thus, the overall retention mechanism could be explained as a combination of adsorption, electrostatic and hydrophilic interactions. The magnitude and contribution of each mechanism is dependent on the nature of the analyte and the separation conditions applied.  相似文献   

18.
柱前衍生-超高效液相色谱法测定鱼卵中的17种氨基酸   总被引:1,自引:0,他引:1  
建立了一种快速、灵敏的柱前衍生-超高效液相色谱-光电二极管阵列检测器(UPLC-PDA)测定史氏鲟(Acipenser schrenckii)、达氏鳇(Huso dauricus)和小体鲟(Acipenser ruthenus)鱼卵中17种氨基酸含量的方法。采用6.0 mol/L的盐酸水解鱼卵,提取液经低压浓缩、碱性中和,然后以6-氨基喹啉-N-羟基琥珀酰亚胺基氨基甲酸酯(AQC)为衍生试剂在pH 8.8硼酸盐缓冲溶液中衍生化。采用的色谱分离柱为Waters BEH C18柱(100 mm×2.1 mm, 1.7 μm),流动相为30 mmol/L乙酸铵水溶液(pH 3.5)和乙腈(含0.15%(v/v)甲酸及30 mmol/L乙酸铵),梯度洗脱,流速为0.7 mL/min,在260 nm波长下检测。17种氨基酸在5.0~1000 μmol/L浓度范围内,峰面积与浓度之间的线性关系良好(r2≥0.9950)。以标准加入法测定回收率和相对标准偏差(RSD),在100、500、750 μmol/L的添加水平下,17种氨基酸的平均回收率为75.4%~107.3%, RSD为2.19%~12.3%。以3倍信噪比(S/N>3)计方法的检出限,17种氨基酸的检出限为0.94~4.04 μmol/L。应用该方法检测了3种鲟鳇鱼鱼卵中的17种氨基酸含量。结果表明,该方法简便、准确、快速、可靠。  相似文献   

19.
A sensitive and reliable HPLC method with fluorescence detection based on the precolumn derivatization of glucosamine with 6-aminoquinolyl-N-hydroxylsuccinimidyl carbamate (AQC) was established for the quantitative determination of glucosamine in rat plasma. The plasma protein was precipitated by acetonitrile, followed by vortex mixing and centrifugation. The supernatant was divided into the organic layer and aqueous layer by adding sodium chloride, and then the aqueous layer was derivatized with AQC in 0.2 M borate buffer of pH 8.8 before the HPLC analysis. An amino acid analysis column (3.9 x 150 mm, 4 microm) was applied, with 140 mM sodium acetate buffer (pH = 5.25) and acetonitrile as mobile phase at a flow rate of 1 mL/min. A linear correlation coefficient of 0.9987 was calculated within the range of 0.1-30 microg/mL of the standard curve for glucosamine. The limit of detection was 30 ng/mL. The intra- and inter-day precisions (as RSD) were less than 7.38 and 12.72%, respectively. The intra- and inter-day accuracy ranged from 91.8 to 110.0%. Extraction recoveries of glucosamine in plasma were more than 90%. The validated method was successfully applied for the quantitative determination of glucosamine in rat plasma and evaluation for pharmacokinetic study of glucosamine. It was also possible to be applied for the quantitative determination of other compounds containing amino group in biological samples.  相似文献   

20.
The amino alcohols in l‐ valinol were effectively separated and quantified using hydrophilic interaction chromatography with fluorescence detection. The influence of the mobile phase (salt type, buffer concentration, and pH) on retention was studied. A column TSKgel amide and mobile phase consisting of 10 mM acetate buffer pH 4.0 and acetonitrile (20:80, v/v) provided well‐ separated symmetric peaks of analytes. Fluorescence detection was performed using postcolumn derivatization with o‐phtaldialdehyde/2‐mercaptoethanol at an excitation and emission wavelength of 345 and 450 nm, respectively. Simple sample pretreatment and very high sensitivity represent the main advantages of the developed method. After validation, the method was successfully applied to the analysis of commercial samples of l‐ valinol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号