首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The potential of carbon nanocones/disks as sorbent material in solid-phase extraction (SPE) procedures has been evaluated. For this aim, a model analytical problem, the determination of chlorophenols in water samples, was selected. An accurately weighed amount of 20 mg of purified carbon nanocones/disks was packed in 3 mL commercial SPE cartridges. Once conditioned, up to 8 mL of water samples can be preconcentrated without analyte losses. The chlorophenols were eluted by using 200 μL of hexane. Aliquots of 2 μL of the organic extract were injected in the gas chromatograph–mass spectrometer for separation and quantification. The purification of the commercial nanocones/disks to reduce the presence of amorphous carbon has been successfully achieved by heating the carbon nanocones/disks at 450 °C for 20 min. Detection limits of chlorophenols were in the range 0.3–8 ng mL−1 by using 2 mL of sample. Moreover, excellent average recovery values (98.8–100.9%) have been obtained after the analysis of water samples from different nature. Finally, the performance of the carbon nanocones/disks as sorbent material has been compared with that of multiwalled carbon nanotubes, providing the former better results under the experimental conditions assayed.  相似文献   

2.
A new dispersive micro solid-phase extraction method which uses single-walled carbon nanohorns (SWNHs) as sorbent is proposed. The procedure combines the excellent sorbent properties of the nanoparticles with the efficiency of the dispersion of the material in the sample matrix. Under these conditions, the interaction with the analytes is maximized. The determination of polycyclic aromatic hydrocarbons was selected as model analytical problem. Two dispersion strategies were evaluated, being the functionalization via microwave irradiation better than the use of a surfactant. The extraction was accomplished by adding 1 mL of oxidized SWHNs (o-SWNHs) dispersion to 10 mL of water sample. After extraction, the mixture was passed through a disposable Nylon filter were the nanoparticles enriched with the PAHs were retained. The elution was carried out with 100 μL of hexane. The limits of detection achieved were between 30 and 60 ng L−1 with a precision (as repeatability) better than 12.5%. The recoveries obtained for the analytes in three different water samples were acceptable in all instances. The performance of o-SWNHs was favourably compared with that provided by carboxylated single-walled carbon nanotubes and thermally treated carbon nanocones.  相似文献   

3.
The aim of this work was to investigate the efficiency of various MWCNTs as SPE materials for the preconcentration of chlorophenols. The COOH-functionalized MWCNTs and MWCNTs were used as SPE sorbents. To evaluate the capability of MWCNTs for the preconcentration of chlorophenols from water samples, 2,4-chlorophenol, 4-chlorophenol, 2,4,6-chlorophenol, 2,6-chlorophenol, 3,4-chlorophenol, and 2-chlorophenol were used as model compounds. Chlorophenols were extracted with acetone, methanol, ethanol, and dichloromethane, and determined by gas chromatography–mass spectrometry. COOH-functionalized MWCNTs <8 nm were found to be the best sorbent for the tested chlorophenols. For COOH-functionalized MWCNTs <8 nm, the recovery rates for all chlorophenols were higher than 50% when acetone or ethanol was used as eluents. In the case of dichloromethane elution, recovery rates for chlorophenols were from 62.0% for 2,6-DCP to 116.8% for 2,4-DCP; only for 2,4,6-TCP was the recovery rate 30.6%. Similar percentage recoveries were achieved with methanol as the eluent.  相似文献   

4.
The characteristic kinetic and retention properties of a silica-based cyanopropylsiloxane-bonded sorbent for solid-phase extraction are described. Abraham′s solvation parameter model is used to characterize the contribution of individual intermolecular interactions to retention under liquid chromatographic and sample processing conditions with aqueous methanol mixtures as the mobile phase. The main features governing retention by the sorbent are the solute's size and hydrogen-bond basicity; interactions of a dipole type are not significant when aqueous methanol solutions are employed as the mobile phase. Compared to typical silica-based octadecylsioxane-bonded sorbents the greater difficulty of forming a cavity in the solvated cyanopropylsiloxane-bonded sorbent more than offsets the more favorable dipole-type and solute hydrogenbond base interactions of the cyanopropylsiloxane-bonded sorbent. It is shown that there are no practical circumstances for which a cyanopropylsiloxane-bonded sorbent would be more useful than a typical ODS sorbent for the isolation of organic non-electrolytes from water by solid-phase extraction.  相似文献   

5.
Magnetite nanoparticles were surface-modified with mercaptoacetic acid (MAA), complexed with Zn(II), and then treated with the dual Schiff base (referred to as imine-based ligand; IBL; obtained by reaction of p-aminobenzoic acid and 2,3-butanedione) to give particles with an architecture of type Fe3O4@MAA@IBL. These are shown to be viable sorbents for magnetic solid phase extraction of organochlorine pesticides (OCPs) from seawater samples. Efficient extraction of the OCPs probably is due to lone pair-π, π-complexation and π-interactions. The sorbent was characterized by transmission electron microscopy, scanning electron microscopy, FT-IR and energy-dispersive X-ray spectroscopy. The effects of the volumes of sample, sorbent dosage and eluent, adsorption and desorption times, and the salinity of the sample on the extraction efficiencies were optimized. The OCPs (heptachlor, aldrin, dieldrin, p,p’-DDE and p,p’-DDT) were quantified by gas chromatography with microelectron capture detection. Under optimal conditions, the limit of detections range was between 1.0 and 1.9 ng L?1. The enrichment factors are between 84.1 and 99.9 %. The sorbent was applied to the rapid extraction of trace quantities of OCPs from seawater samples and gave good relative recoveries (78 to 108 %) and relative standard deviations (<8.3 %).
Graphical Abstract Fe3O4 nanoparticles were functionalized with mercaptoacetic acid. The carboxylate was coordinated with Zn(II) and the ligands were immobilized via coordination with Zn(II). The lone pair-π, π-complexation and π-interaction of modified magnetite nanoparticles made this sorbent effective for extraction of organochlorine pesticides.
  相似文献   

6.
A new hypercrosslinked polymer (HXLGp) with hydrophilic character due to the presence of hydroxyl moieties has been tested as a sorbent for the solid-phase extraction (SPE) of several polar compounds from water samples. This new sorbent enables the on-line extraction of 300 ml of sample with recoveries higher than 80% for polar compounds such as oxamyl, methomyl or desisopropylatrazine (DIA). The HXLGp has also been compared to other commercially available sorbents such as Oasis HLB (hydrophilic macroporous), to hydrophobic hypercrosslinked resins and to a previously synthesized sorbent based on N-vinylimidazole-divinylbenzene. The results are consistently better with the new synthesized sorbent. The method was successfully applied to the on-line SPE-HPLC of tap and river water samples. The validation with river water samples provided good linearity range and detection limits between 0.03 for methomyl and 4-nitrophenol (4NP) to 0.2 microg l(-1) for phenol (Ph).  相似文献   

7.
8.
A laboratory-made sorbent for solid-phase extraction (SPE) was obtained by thermal immobilization of poly(methyloctylsiloxane) (PMOS) onto silica. Cartridges packed with the new sorbent were used for the simultaneous determination of imazethapyr, nicosulfuron, diuron, linuron and chlorimuron-ethyl in water. These pesticides were separated and quantified using high-performance liquid chromatography with diode array detection (HPLC-DAD). The recoveries achieved with the laboratory-made PMOS cartridges were compared with those of some commercially available silica-based and polymer-based cartridges having C18, C8 and NH(2) pendant groups. Method validation using the laboratory-made sorbent was performed for the five pesticides at three fortifications levels (1x, 2x and 10x the limit of quantification of each pesticide). The laboratory-made PMOS cartridge has low cost preparation and showed good recoveries (72-111%) for all pesticides. Repeatability and intermediate precision were lower than 15%. Its performance was similar or even better, in some cases, than those of the commercial cartridges.  相似文献   

9.
10.

A simple, sensitive and accurate method was developed for solid-phase extraction and preconcentration of trace levels of gold in various samples. It is based on the adsorption of gold on modified oxidized multi-walled carbon nanotubes prior to its determination by graphite furnace atomic absorption spectrometry. The type and volume of eluent solution, sample pH value, flow rates of sample and eluent, sorption capacity and breakthrough volume were optimized. Under these conditions, the method showed linearity in the range of 0.2–6.0 ng L−1 with coefficients of determination of >0.99 in the sample. The relative standard deviation for seven replicate determinations of gold (at a level of 0.6 ng L−1) is ±3.8 %, the detection limit is 31 pg L−1 (in the initial solution and at an S/N ratio of 3; for n = 8), and the enrichment factor is 200. The sorption capacity of the modified MWCNTs for gold(III) is 4.15 mg g−1. The procedure was successfully applied to the determination of gold in (spiked) water samples, human hair, human urine and standard reference material with recoveries ranging from 97.0 to 104.2 %.

A sorbent based on modified carbon nanotubes was prepared and used to extract gold ion from various samples prior to its determination by graphite furnace atomic absorption spectrometry

  相似文献   

11.
ABSTRACT

In this work, the magnetic sorbent was developed by covalent binding of a Schiff base ligand, N,N’-bis(3-salicyliden aminopropyl)amine (salpr), on the surface of silica coated magnetic nanoparticles (Salpr@SCMNPs). The core-shell nanoparticle was applied for the magnetic solid-phase extraction (MSPE) combined with dispersive liquid-liquid microextraction (DLLME) of phenolic compounds from water samples prior to gas chromatography-flame ionisation detector (GC?FID). Characterisation of the Salpr@SCMNPs was performed with different physicochemical methods such as Fourier transform infrared (FT-IR), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). Variables affecting the performance of both extraction steps such as pH of the water sample, the sorbent amount, the desorption conditions, the extraction time; and extraction solvent were studied. Under the optimised conditions, the analytical performances were determined with a linear range of 0.01–100 ng mL?1 and a limit of detection at 0.003–0.02 ng mL?1 for all of the analytes studied. The intra-day (n = 5) and inter-day (n = 3) relative standard deviations (RSD%) of three replicates were each demonstrated in the range of 6.9–8.9% and 7.3–10.1%, respectively. The proposed method was executed for the analysis of real water samples, whereby recoveries in the range of 92.9–99.0% and RSD% lower than 6.1% were attained.  相似文献   

12.
We have surface-functionalized magnetic particles (MPs) with polydimethylsiloxane and multi-walled carbon nanotubes in a two-step reaction. The MPs were applied to solid-phase extraction of the fluoroquinolones ofloxacin, norfloxacin, ciprofloxacin, enrofloxacin prior to their determination by capillary liquid chromatography. The effects of sample pH, adsorption time, type of eluent, desorption time and desorption temperature were investigated. Under the optimum conditions, the extraction efficiencies are in the range from 81.5?% to 94.1?%, with relative standard deviations (RSDs) of <7.6?%. The detection limits vary from 0.24 to 0.48?ng?mL?1. The method was applied to the analysis of spiked mineral water and honey. The recoveries for the fluoroquinolones in the real samples range from 84.0?% to 112?%, with RSDs ranging from 2.9?% to 7.8?%.
Figure
?  相似文献   

13.
A new gallium (Ga(III)) ion-imprinted multi-walled carbon nanotubes (CNTs) composite sorbent was synthesized by a surface imprinting technique. The Ga(III) ion-imprinted/multi-walled carbon nanotubes (Ga(III)-imprinted/CNTs) sorbent was characterized by Fourier transform infrared (FT-IR), X-ray diffraction (XRD), nitrogen adsorption experiment, static adsorption experiment, and solid-phase extraction (SPE) experiment. The effects of sample volume, sample pH, washing and elution conditions on the extraction of Ga(III) ion from real sample were studied in detail. The imprinted sorbent offered a fast kinetics for the adsorption of Ga(III). The maximum static adsorption capacity of the imprinted sorbent towards was 58.8 μmol g−1. The largest selectivity coefficient for Ga(III) in the presence of Al(III) was over 57.3. Compared with non-imprinted sorbent, the imprinted sorbent showed good imprinting effect for Ga(III) ion, the imprinting factor (α) was 2.6, the selectivity factor (β) was 2.4 and 2.9 for Al(III) and Zn(II), respectively. The developed imprinted SPE method was applied successfully to the detection of trace Ga(III) ion in fly ash samples with satisfactory results.  相似文献   

14.
W Gao  X Sun  T Chen  Y Lin  Y Chen  F Lu  Z Chen 《Journal of separation science》2012,35(15):1967-1976
In the present work, we showed a novel method to synthesize cyano-functionalized multiwalled carbon nanotubes (MWCNTs-CN) and utilize it as a solid-phase extraction sorbent for preconcentration of phenolic compounds in environmental water samples. MWCNTs-CN was synthesized through surface functionalization of multiwalled carbon nanotubes (MWCNTs). The functional groups on the surface of modified MWCNTs were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis and scanning electron microscopy. The analytical procedure was based on a conventional solid-phase extraction step for which 100 mg of MWCNTs-CN were packed in a 3 mL polypropylene cartridge. Analytes were thus isolated and preconcentrated from the pretreated samples and subsequently detected on high-performance liquid chromatography-ultraviolet detection. The results showed the proposed method exhibited good sensitivity and precision for the extraction and elution of analytes. The limit of detections (S/N = 3) of the method were 0.45, 0.09, 0.08, and 3.00 ng mL(-1) for p-chlorophenol, 1-naphthol, 2-naphthol, and 2,4-dichlorophenol, respectively. The mean relative recoveries (n = 3) were between 80.28 and 103.13%, and the repeatability (RSD ≤ 5.10%) and reproducibility (RSD ≤ 7.68%) were accepted. This developed method was applied to determine phenolic compounds in environmental water samples. There is a positive result only for 2-naphthol with concentration of 0.38 ng mL(-1) in seawater sample.  相似文献   

15.
A modified quick, easy, cheap, effective, rugged and safe (QuEChERS) method with multi-walled carbon nanotubes (MWCNTs) as a reversed-dispersive solid-phase extraction (r-DSPE) material combined with gas chromatography-mass spectrometry was developed for the determination of 14 pesticides in complex matrices. Four vegetables (leek, onion, ginger and garlic) were selected as the complex matrices for validating this new method. This technique involved the acetonitrile-based sample preparation and MWCNTs were used as the r-DSPE material in the cleanup step. Two important parameters influencing the MWCNTs efficiency, the external diameters and the amount of MWCNTs used, were investigated. Under the optimized conditions, recoveries of 78-110% were obtained for the target analytes in the complex matrices at two concentration levels of 0.02 and 0.2 mg/kg. In addition, the RSD values ranged from 1 to 13%. LOQs and LODs for 14 pesticides ranged from 2 to 20 μg/kg and from 1 to 6 μg/kg, respectively.  相似文献   

16.
Zhang  Li  Li  Zhenhua  Du  Xianghui  Chang  Xijun 《Mikrochimica acta》2011,173(3-4):391-399
We describe the synthesis of spherical poly(vinyl butyral) (PVB) nanobeads by controlled precipitation via addition of non-solvent. Effects of various reaction parameters on nanoparticle size were investigated by dynamic light scattering and electron microscopy. The ability to incorporate dopant molecules was studied using a fluorescent perylene derivative as a model additive, and the dye-doped nanoparticles were investigated by confocal microscopy. In an optimized experimental protocol, PVB nanoparticles were obtained that were efficiently taken up by human cancer cells devoid of coating. The novel nanospheres are economic, easy to prepare and capable of incorporating additives. Lacking cytotoxicity in vitro, PVB nanobeads are attractive with respect to various potential applications such as optical imaging and particle tracking, diagnostics, and drug delivery.
Figure
The synthesis and characterization of polyvinyl butyral nanoparticles is described. The beads were doped with a dye and used for intracellular fluorescence imaging. The nanospheres are efficiently taken up without coating and do not display in vitro cytotoxicity on human cancer cells. They are therefore attractive for various applications.  相似文献   

17.
Jin J  Zhang Z  Li Y  Qi P  Lu X  Wang J  Chen J  Su F 《Analytica chimica acta》2010,678(2):183-188
The enrichment of polycyclic aromatic hydrocarbons (PAHs) in water samples with magnesium oxide (MgO) microspheres was evaluated, and four 3-5-ring PAHs were used as probes to validate the adsorption capacity of the material. Factors affecting the recovery of PAHs were investigated in detail, including the type and concentration of organic modifiers, elution solvents, particle size of the adsorbent, volume and flow rate of the samples, and the lifetime of MgO cartridges. The recoveries of four PAHs extracted from 20 mL of seawater spiked with standard PAHs ranged from 85.8% to 102.0% under the optimised conditions. The limits of detection varied from 1.83 ng L−1 to 16.03 ng L−1, indicating that the analytical method was highly sensitive. Additionally, the proposed method was successfully used to enrich PAHs in seawater. Compared to conventional methods, the proposed method consumed less organic modifier (5% acetone), and cheaper sorbents with comparable extraction efficiency were employed.  相似文献   

18.
The sulfhydryl-functionalised core-shell Fe3O4@SiO2 magnetic nanoparticles (Fe3O4@SiO2–RSH MNPs)-based dispersive solid-phase extraction method was developed. The goal of this method is the extraction of mercury species from natural water samples. An interesting aspect of the method is that, thanks to the spontaneously aggregate, the MNPs with a sub-30-nm-size range could be fast and efficiently extracted by 0.45 μm pore size mixed cellulose esters membrane filter. Thus, the elution step can be conducted by passing small amounts eluent through the MNPs on the membrane. It is also found that addition of Ag+ to water sample could improve the elution efficiency, and furthermore, minimises the matrix effects during the extraction of mercury species from natural water samples. The feasibility of the method was studied, and extraction efficiency was evaluated. The results showed that, calculated at 5 ng/L spiked concentration levels, absolute recoveries were 89.4%, 91.9% and 64.2%, and enrichment factors (EFs) were 596, 613 and 428, for inorganic mercury, methylmercury and ethylmercury, respectively. The high EFs were achieved in 5 min of overall extraction time. The method was applied to groundwater and river water samples. The results showed that its suitability for use in fast extracting trace levels of mercury species from natural water samples.  相似文献   

19.
Wu X  Hu J  Zhu B  Lu L  Huang X  Pang D 《Journal of chromatography. A》2011,1218(41):7341-7346
A sorbent based on the aptamer for ochratoxin A was immobilized onto magnetic nanospheres (MNS) and used to develop a magnetic solid-phase extraction procedure to clean up food samples in conjunction with high-performance liquid chromatography separation and fluorescence detection. Specific retention of ochratoxin A by the sorbent was demonstrated, and the capacity of the MNS-aptamer sorbent was determined. The efficacy of this new approach was successfully evaluated through comparison with solid-phase extraction on commercial C18 cartridge. Several different food samples fortified in the range of with 2.5-50 μg/kg yielded mean recoveries from 67% to 90%, respectively. Finally, this oligosorbent was applied to the selective extraction of ochratoxin A from unfortified food samples.  相似文献   

20.
Magnetic knitting aromatic polymers (Fe3O4/KAPs) are introduced here as a new kind of sorbents. KAPs are hyper-cross-linked-polymers that were prepared via a Friedl-Crafts reaction from triphenylphosphine and benzene as building blocks. The Fe3O4/KAP composite was obtained by coprecipitation of KAP with magnetite nanoparticles. The resulting Fe3O4/KAP is shown to be a viable magnetic sorbent for various organic materials such as the phenylurea herbicides (PUHs), including metoxuron, monuron, chlortoluron, monolinuron and buturon, and also for various phthalates, polycyclic aromatic hydrocarbons and chlorophenols. The Fe3O4/KAP was characterized by means of Brunauer-Emmett-Teller surface area measurements, Fourier-transform infrared spectroscopy, thermogravimetry, X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Following desorption with acetonitrile, the analytes were quantified by using HPLC with UV detection. The effects of adsorbent dosage, extraction time, sample pH, ionic strength, desorption solvent and desorption time were optimized for the PUHs. Under optimal conditions, response is linear from 0.5–1.0 up to 50 ng·mL?1 for the five PUHs. Lower limits of detection range between 0.05 and 0.30 ng·mL?1. Other figures of merit include (a) high enrichment factors (60–297), (b) good recoveries (91.8–106.5%), and (c) relative standard deviations of <8.4%. The method was successfully applied to analysis of the PUHs in real samples (bottled mixed juice, milk and soymilk). The results indicate that such Fe3O4/KAPs have a wide application scope as an adsorbent for use in magnetic solid phase extraction.
Graphical abstract A magnetic knitting aromatic polymer based nanocomposite (Fe3O4/KAP) was prepared by a one-pot method and explored as an absorbent for magnetic solid-phase extraction (MSPE) of phenylurea herbicides (PUHs) from bottled mixed juice, milk and soymilk samples before quantitation by HPLC with UV detection.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号