首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用电化学阻抗(EIS)、扫描微参比技术(SRET)、接触角、粗糙度、附着力、盐雾等测试方法,研究了铝合金阳极氧化与贻贝黏附蛋白(MAP)/CeO2/硅烷γ-APS(MCA)表面复合修饰的腐蚀防护性能以及对改性聚氨酯涂层附着力和耐蚀性的影响。结果表明,MCA复合膜可抑制铝合金的腐蚀,并具有一定的自修复功能;阳极氧化和MCA表面复合修饰可为铝合金提供有效的早期腐蚀防护作用,且能提高铝合金表面粗糙度和润湿性,显著提升改性聚氨酯涂层在铝合金表面的附着力和耐蚀性,因而结合改性聚氨酯涂层和表面复合修饰可实现对铝合金长期有效的腐蚀防护。  相似文献   

2.
6063铝合金三价铬化学转化膜的制备与电化学性能   总被引:2,自引:0,他引:2  
以硫酸铬钾及磷酸为原料在6063铝合金上制备了三价铬化学转化膜. 采用极化曲线及交流阻抗技术研究了不同条件下三价铬转化膜的电化学性能. 结果表明, 温度为30-40 ℃、沉积时间为9 min、pH值为2.0-3.0、KCr(SO4)2为15-25 g·L-1及H3PO4的浓度为10-20 g·L-1的条件为最优条件. Tafel极化曲线结果表明化学转化膜比基体铝合金具有更正的腐蚀电位(Ecorr)、小孔腐蚀电位(Epit)和更低的腐蚀电流(icorr), 说明化学转化膜具有良好的耐腐蚀性能. 利用交流阻抗谱的数据建立了等效电路模型, 并拟合出了腐蚀参数, 如表面电阻(Rcoat)及电容(Ccoat), 电荷转移电阻(Rct)及双电层电容(Cdl)等. 三价铬化学转化膜的交流阻抗谱结果与极化曲线的电化学测试结果相吻合.  相似文献   

3.
铝金属基复合材料以其多方面的优异性能在航空、航天、汽车、电子和光学等工业领域中显示出了十分广泛的应用前景[1 ,2].某些种类的(如SiC颗粒增强)铝金属基复合材料已经开始走向工业规模的应用[3].然而,在铝金属基复合材料中由于增强体的存在使其内部组织结构极不均匀,在使用环境中极易形成腐蚀微电池而遭受点蚀、剥蚀、磨蚀等等腐蚀形式的破坏[4 ,5] .适用于常规铝合金防腐处理方法的阳极氧化法和铬酸盐化学氧化法(Alodine法)存在着下述弊端而不能对铝金属基复合材料起到有效的防腐作用:1)铝金属基复合…  相似文献   

4.
The ordinary organic coatings on aluminum alloy usually encounter a problem of low adhesion to the substrate, which results in destruction and failure of the long-term protective performance of the anticorrosion systems. The surface modification of aluminum alloy is able to enhance the adhesion of organic coating on aluminum alloys, and to improve their protective performance. In this work, a combined surface modification of anodic oxidation and mussel adhesion protein/CeO2/3-aminopropyltriethoxysilane composite film (MCA) was developed on the aluminum alloy. The adhesion of modified polyurethane coated on the treated aluminum alloy and its corrosion protective performance were evaluated comprehensively by using contact angle, adhesion strength, electrochemical impedance spectroscopy (EIS), and scanning reference electrode technique (SRET). The measurements of EIS and SRET demonstrated that the MCA composite film on anodic oxidized Al possessed self-healing function and provided effective protection against early corrosion of aluminum alloy. The pull-off test showed that both anodic oxidation treatment and MCA composite film modification were able to increase the adhesion of modified polyurethane coating on aluminum alloy, and their combined action were supposed to remarkably enhance the adhesion strength up to 17.1 MPa. The reason for the improvement of adhesion was that the anodic oxidation treatment and MCA composite film modification could improve the surface roughness of aluminum alloy, and enhance the surface wettability and surface polarity, which is beneficent to enhance the bonding of the modified polyurethane coating to aluminum alloy surface. The EIS results showed that no any corrosion occurred for the modified polyurethane coating on the treated aluminum alloy during 65 d immersion in 3.5wt.% NaCl solution. The impedance value in low frequency range of the modified polyurethane coating always maintained at a high order of magnitude on the aluminum alloy treated by anodic oxidation and MCA composite film modification, showing an excellent protective performance of the coating system. The evaluation of Neutral Salt Spray (NSS) indicated that the modified polyurethane coating on the treated aluminum alloy owned superior corrosion protection performance, and the adhesion strength remained 13.1 MPa and no any corrosion was found at the scratch locations even after 1200 h of salt spray testing. It was concluded that combination of anodic oxidation and MCA composite film were capable of significantly improving the adhesion of modified polyurethane coating on aluminum alloy and providing long-term effective corrosion protection for aluminum alloy. © 2021 Authors. All rights reserved.  相似文献   

5.
The Ni-P/TiN/PTFE (poly tetra fluoroethylene) composite coatings were prepared by electroless plating method on Ti plate, which was used as bipolar plates of proton exchange membrane fuel cells (PEMFCs). The morphology, crystallographic texture, electrochemical corrosion, contact resistance, and hydrophobic property of the Ti bipolar plates with coatings were investigated. The results revealed that Ni-P/TiN/PTFE coating had a dense surface morphology, uniform distribution of composite particles. Ti with coating showed 0.48 μA cm2 of corrosion current in the simulated solution of PEMFCs and 6 mΩ cm2 of interfacial contact resistance (ICR). The hydrophobicity test showed that the coating interface was flat and the wetting angle was 112.4°. In conclusion, The Ni-P/TiN/PTFE composite coatings exhibit superior improvement in corrosion resistance, interface hydrophobicity, and conductivity to Ni-P, Ni-P/TiN, and Ni-P/PTFE coatings. The Ni-P/TiN/PTFE coating was suited for bipolar plate surface modification of bipolar plates.  相似文献   

6.
Highly fouling-resistant ultrafiltration (UF) membranes were synthesized by heterogeneous photograft copolymerization of two water-soluble monomers, poly(ethylene glycol) methacrylate (PEGMA) and N,N-dimethyl-N-(2-methacryloyloxyethyl-N-(3-sulfopropyl)ammonium betaine (SPE), with and without cross-linker monomer N,N'-methylene bisacrylamide (MBAA), onto a polyethersulfone (PES) UF membrane. The characteristics, the stability, and the UF separation performance of the resulting composite membranes were evaluated in detail. The membranes were characterized with respect to membrane chemistry (by ATR-IR spectroscopy and elemental analysis), surface wettability (by contact angle), surface charge (by zeta potential), surface morphology (by scanning electron microscopy), and pure water permeability and rejection of macromolecular test substances (including the "cutoff" value). The surface chemistry and wettability of the composite membranes did not change after incubating in sodium hypochlorite solution (typically used for cleaning UF membranes) for a period of 8 days. Changes in water permeability after static contact with solutions of a model protein (myoglobin) were used as a measure of fouling resistance, and the results suggest that PEGMA- and SPE-based composite membranes at a sufficient degree of graft modification showed much higher adsorptive fouling resistance than unmodified PES membranes of similar or larger nominal cutoff. This was confirmed in UF experiments with myoglobin solutions. Similar results, namely, a very much improved fouling resistance due to the grafted thin polymer hydrogel layer, were also obtained in the UF evaluation using humic acid as another strong foulant. In some cases, the addition of the cross-linker during modification could improve both permeate flux and solute rejection during UF. Overall, composite membranes prepared with an "old generation" nonfouling material, PEGMA, showed better performance than composite membranes prepared with a "new generation" one, the zwitterionic SPE.  相似文献   

7.
Nanoscaled surface roughness with a hydrophobically modified surface has been widely used for preparation of superhydrophobic materials. However, the complicated procedure, high cost and harmful compounds used in most superhydrophobic surface modifications limited their applications. This research aims at fabricating superhydrophobic cellulosic or semi-superhydrophobic papers with low cost and nontoxic materials. Commercial PCC (precipitated calcium carbonate) particles, hydrophobic stearic acid and polymer latex particles were used for surface roughness control, surface hydrophobic modification agent, and polymer binder, respectively. A simple coating or dipping method was used to produce high contact angle and high water resistance papers. It was found that the surface pretreatment of PCC with fatty acid salt prior mixing with polymer binder plays important role for improving the water contact angle (WCA). The combination of surface coating with dipping treatment will further increase the water contact angle and water resistance of the paper. A WCA near 150° over modified paper surface has been achieved. At the same degree of water resistance, the total cost of the paper can be significantly reduced by our method.  相似文献   

8.
More information is contained in Electrochemical Impedance Spectroscopy (EIS) results at steady-state vs. Temperature data sets than just the low frequency limit/polymer coating film resistance data most often cited. We have analyzed various EIS-Temperature data sets for several coating films in immersion and present the results considering the coating film dielectric constant vs. frequency and temperature. Water up-take can be analyzed by these methods and can be used to estimate the role of this process in the failure of corrosion protective coatings. For coating films that have been subjected to cyclic exposure, analysis of the dielectric constant vs. frequency data resulting from EIS data on these films indicate that cyclic exposure contributes significantly to ‘physical aging’ of the coating polymer.  相似文献   

9.
Jute stick, one of the most commonly and abundantly available agricultural waste product, was converted to a value-added submicron/nano jute carbon by using pyrolysis and high-energy ball milling techniques. The submicron/nano jute carbon was characterized using FE-SEM, TEM, EDS, XRD, XPS and Raman spectroscopy. The anticorrosive performance of the submicron/nano jute carbon was investigated through electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP) and salt spray techniques, on mild steel plates coated with a mixture of epoxy resin and the submicron/nano jute carbon. The electrochemical impedance of the steel coated with the composite coating was two orders of magnitudes higher than that of the specimen coated with neat epoxy. Consequently, the corrosion rate of specimens coated with composite coating was 13–20 times higher than that of steel coated with neat epoxy coating. The salt spray results also indicate an improvement in the corrosion resistance performance of the composite coating compared to the neat epoxy. The uniform distribution of the submicron/nano jute carbon particles in the epoxy resin improved the denseness of the composite coating by acting as a barrier against the diffusion of chloride, moisture, and oxygen, thus, improving the corrosion resistance of the developed coating.  相似文献   

10.
氢气是一种清洁高效的能源载体,通过海水电解规模化制备氢气能够为应对全球能源挑战提供新的机遇。然而,缺乏高活性、高选择性和高稳定性的理想电极材料是在腐蚀性海水中连续电解过程的一个巨大挑战。为了缓解这一困境,需要从基础理论和实际应用两方面对材料进行深入研究。近年来,人们围绕电极材料的催化活性、选择性和耐腐蚀性进行了大量的探索。本文重点总结了高选择性和强耐腐蚀性材料的设计合成与作用机制。其中详细介绍了多种电极材料(如多金属氧化物、Ni/Fe/Co基复合材料、氧化锰包覆异质结构等)对氧气生成选择性的研究进展;系统论述了各种材料的抗腐蚀工程研究成果,主要讨论了本征抗腐蚀材料、外防护涂层和原位产生抗腐蚀物种三种情况。此外,提出了海水电解过程中存在的挑战和潜在的机遇。先进纳米材料的设计有望为解决海水电解中的氯化学问题提供新思路。  相似文献   

11.
借助优化钛/锆基化学转化工艺,在碱性无氰镀锌层基体上获得了环保型的无铬转化膜,并与铬酸盐彩色钝化膜作对比.中性盐雾试验、动电位极化和电化学阻抗谱测试结果表明:钛/锆基化学转化膜出现白锈时间为96 h,达到铬酸盐彩色钝化膜标准,且呈现出较低的腐蚀电流和较高的极化电阻,但钝化特性不如铬酸盐彩色钝化膜明显.  相似文献   

12.
电沉积非晶态Ni-W-B/ZrO2复合镀层及其结构与性能   总被引:1,自引:0,他引:1  
在含有二氧化锆的Ni-W-B电解液中,电沉积获得Ni-W-B/ZrO2复合镀层.用差示扫描量热分析(DSC)、X射线衍射(XRD)、扫描电子显微镜(SEM)和电化学技术较系统地研究了Ni-W-B/ZrO2复合镀层的电沉积、热处理过程,以及镀层的结构、表面形貌、显微硬度和耐腐蚀性能.结果表明, 复合镀层的质量组成为Ni 47.5%、W 40.9%、B 0.9%和ZrO2 10.7%. DSC和XRD结果清楚说明, 二氧化锆对基质Ni-W-B镀层的结构有明显影响, 使得复合镀层的非晶态结构特征更加明显 .复合镀层比Ni-W-B合金有更高的显微硬度, 呈现团粒状结构, 晶块之间不存在裂纹但晶界清晰可辨; 二氧化锆粒子分散于Ni-W-B基质镀层中. 400 ℃、1 h热处理后, Ni-W-B基质镀层中W向镀层表面偏析, 镀层呈现固溶体晶态结构特征, 表面形貌特征基本不变, 复合镀层的显微硬度进一步提高, 抗腐蚀性能增强, 但镀层表层中的二氧化锆粒子大量脱落.  相似文献   

13.
Oxyethylene macrocyclic compounds (crown-ethers) act as ligands of intracrystalline cations of certain layered silicates as montmorillonites. Stable intercalation materials are formed which are used to prepare organic-inorganic membranes by encapsulating these intercalation compounds with a poly-butadiene thin coating. Electrochemical Impedance Spectroscopy (EIS) is used to study the resulting composite membranes in contact with aqueous electrolytes. From the impedance plots, the ionic resistance of the membranes is obtained. The thickness of the polybutadiene coating is an important factor determining the ability of ions to pass across the membrane. Marked differences in the ionic resistance are observed as a function of the nature of the interlayer macrocyclic compound. For non-intercalated montmorillonite membranes, the ionic resistance is strongly reduced, whereas for some crown-ether intercalated materials such as 18-crown-6 and dibenzo 24-crown-8, iono-selective membranes are obtained. Concerning the nature of the electrolyte, cations exhibiting greater hydration energies show higher difficulties to pass through the membrane and, consequently, the ionic resistance increases.  相似文献   

14.
A new method of depositing an insulating multifunctional oxide coating on metal particles was developed. Such coatings increase corrosion resistance and insulate metal particles from each other. On base of capsulated by oxide coating water-atomized iron powder ASC100.29, new composite soft magnetic materials were synthesized, which are able of replacing electrical steel in devices. Structural, electromagnetic properties and corrosion characte-ristics of the obtained composites were studied. It was found that the synthesized composite materials have low electromagnetic losses, high values of magnetic induction(up to 2.1 T) and good corrosion resistance. The results demonstrate that the use of such materials in power supplies, chokes, transformers, stators and rotors of electric machines and other products ensures their stable operation under various conditions.  相似文献   

15.
激光熔凝处理对纯铁渗稀土层组织与耐蚀性能的影响   总被引:5,自引:2,他引:3  
通过SEM观察,X射线光电子能谱分析,电化学阻抗谱测定和阳极极化曲线的测试,探讨激光熔凝处理对纯铁渗稀土层组织与耐蚀性能的影响,结果表明,在一定条件下,激光熔凝处理可进一步提高纯铁渗稀土层组织的致密性与均匀性,显著提高稀土渗层的耐蚀性。  相似文献   

16.
徐江  卓城之  蒋书运 《物理化学学报》2009,25(10):1958-1966
采用复合镀渗工艺在316L不锈钢表面分别制备了两种纳米颗粒(非晶nano-SiO2颗粒和nano-SiC颗粒)增强的Ni基复合镀渗合金层. 利用扫描电子显微镜(SEM)和透射电子显微镜(TEM)观察了两种复合镀渗合金层的微观组织特征. 通过外加电位(+0.2 V)条件下的电流密度、冲蚀条件下的极化曲线和冲蚀后的交流阻抗谱表征了这两种复合镀渗层在单相流(3.5%(w, 质量分数)NaCl溶液)与料浆流(3.5%NaCl+10%(w)石英砂)中的电化学腐蚀特征, 并采用SEM观察两种复合镀渗层冲蚀后的截面形貌, 探讨这两种纳米颗粒增强的Ni基复合镀渗层在料浆流中的冲蚀机理. 电化学测试结果表明: 静态条件下, 电刷镀含纳米SiO2颗粒的复合镀渗层的耐蚀性能低于单一合金层, 而动态冲蚀条件下, 结果与之相反; 电刷镀含SiC颗粒的复合镀渗层的耐蚀性能在静态和动态冲蚀条件下均低于单一合金层. 对两种复合镀渗层的冲蚀截面形貌观察表明: 弥散分布的纳米SiO2颗粒能明显改善Ni基合金层的耐冲蚀性能; 而添加纳米SiC颗粒在渗金属过程中已完全分解, 导致三元硅化物(Cr6.5Ni2.5Si)和碳化物(Cr23C6)的析出, 而析出相在冲蚀过程易于脱落, 加速了Ni基合金层的质量流失.  相似文献   

17.
复合电沉积的最新研究动态   总被引:31,自引:0,他引:31  
综述近年来国内外复合电沉积技术最新研究动态.重点探讨纳米复合镀层,电催化复合镀层以及光活性复合镀层等方面的研究现状和发展趋势.纳米复合镀层比一般的复合镀层具有更高的硬度,更好的耐磨性和耐蚀性;电催化复合镀层则可在纯金属电极,合金电极的基础上进一步降低电极反应的过电位.以金属氧化物,导电聚合物作为基质材料的电催化复合镀层已为现代复合电沉积技术开辟了一个新领域.  相似文献   

18.
非晶态Ni-W/ZrO2复合镀层的制备、热处理及腐蚀行为   总被引:2,自引:0,他引:2  
在镍钨合金电解液中, 通过搅拌使二氧化锆固体微粒悬浮, 电沉积制备Ni-W/ZrO2复合镀层. 研究结果表明, 二氧化锆粒子影响复合镀层的电沉积、表面形貌、结构、热处理过程和抗腐蚀性能; 与Ni-W合金的电沉积过程相比, 复合镀层中的W含量和电流效率均降低; 在400 ℃处理1 h后, 嵌入Ni-W本体中的ZrO2粒子脱落, W向镀层表面富集. 扫描电子显微镜(SEM)结果显示, 复合镀层呈现团粒状形态, 无裂纹. 差示扫描量热(DSC)分析结合X射线(XRD)衍射实验指出, Ni-W/ZrO2复合镀层为非晶态结构. 复合镀层的显微硬度较纳米晶Ni-W合金的高; 热处理后, 复合镀层的显微硬度和在3%氯化钠溶液中的抗腐蚀行为显著增强.  相似文献   

19.
A process has been designed for manufacturing a new composite material consisting of a PTFE matrix with a carbon phase implanted in the surface layer of up to 30 μm thickness. The process involves radiation graft polymerization of vinilydene chloride (VDC) from the vapor phase onto the PTFE matrix followed by dehydrochlorination of implanted PVDC. The VDC grafting kinetics, the distribution of the grafted polymer and the carbon phase, and the mechanical characteristics of the composite material have been investigated. It has been shown that unlike initial PTFE, the composite possesses good adhesive bonding properties and a small contact angle.  相似文献   

20.
Abstract

Phosphorylated graphene oxide (PedGO) was synthesized through the in-situ phosphate esterification method with urea as catalyst and then embed into waterborne acrylate-epoxy resin emulsion (AE) coating to modify the coating. The TEM and AFM indicated that phosphate was uniformly decorated on GO sheets, forming a large phosphorylated graphene oxide sheets. The PedGO improved the water vapor permeability and the coating adhesion strength after 30?days of immersion in 3.5% NaCl of AE coatings, respectively. Electrochemical impedance spectroscopy measurements (EIS) revealed that the PedGO-modified AE (PedGO/AE) was an outstanding barrier against corrosive media compared with AE or GO-modified AE (GO/AE). Scratch tests also showed that the corrosion-promotion effect of PedGO in AE was inhibited. The enhanced corrosion protection performance was observed because on the one hand the PedGO can greatly prolonged the diffusion pathway of corrosive media in the coating matrix; on the other hand the organic phosphate on the PedGO formed the passivation membrane with metal ions by chelation in the corrosion region, which can prevented the contact of corrosive medium and metal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号