首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The efficient utilization of solar energy for photoelectrocatalytic (PEC) water splitting is a feasible solution for developing clean energy and alleviating environmental issues. However, as the core of PEC technology, the existing photoanode catalysts have disadvantages such as poor photoelectrocatalytic conversion efficiency, low conductivity of photogenerated carriers, and instability. Here, we report the ultrathin two-dimensional sandwich-like (SW) heterojunction of In2Se3/In2S3/In2Se3 (SW In2S3@In2Se3) for the first time for PEC water splitting. Our findings identify the efficient separation of electrons and holes by constructing SW In2S3@In2Se3 heterojunction. The in situ synthesis of ultrathin nanosheet arrays by using surface substitution of Se atom to epitaxially grow cell In2Se3 maximizes the contact area of heterogeneous interface and accelerates the transmission of charge carrier. Benefitting from the unique structure and composition characteristic, SW In2S3@In2Se3 displays excellent performance in PEC water splitting. The photocurrent density of SW In2S3@In2Se3 reaches 8.43 mA cm−2 at 1.23 VRHE. Compared with In2S3, the SW In2S3@In2Se3 photoanode has nearly 12 times higher PEC performance, which represents the best performance among the In2S3-based photoanode heterojunction reported so far. The evolution rate of O2 reaches 78.8 μmol cm−2 h−1, and the photocurrent has no apparent variety within 24 h.  相似文献   

2.
In this study, we achieve the production of nontoxic Cu2Fe1-xAlxSnS4 films (x = 0, 0.25, 0.50, 0.75 and 1) by substituting Fe with Al atoms. Physical properties of the investigated films were studied using: Energy dispersive X-ray spectrometry (EDX), scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, spectrophotometer and drop shape analysis system (DSA). The formation of new quaternary Cu3Al0.6Sn1S6 (CATS) chalcogenide for x = 1 was proven from EDX study. Notably, the major diffraction peaks were located at 2θ = 28.34°, 47.43° and 55.93° which are respectively tagged as (1 1 2), (2 0 4), and (3 1 2) plans, confirming the stannite crystal structure of Cu3Al0.6Sn1S6 film. The morphological states show a nanofiber structure accompanied with voids and cavities for CATS films. Tauc-relation plot reveals direct energy bandgap, close to 1.52 eV, which proves the absorber film type of Cu3Al0.6Sn1S6. The effluent toxicity of the obtained thin films has been assessed using the inhibition of Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria and indicated good antibacterial activity of the CATS/SnO2:F heterojunction. The viability rates against S. aureus achieved 40 %, 31 % and 15% for SnO2:F, Cu3Al0.6Sn1S6 films and CATS/SnO2:F heterojunction. These results highlight the great antibacterial activity of coupled CATS/SnO2:F. Therefore this research underscores the effectiveness of CATS/SnO2:F surface which demonstrates self-disinfecting and self-cleaning with hydrophilicity and high antibacterial activity.  相似文献   

3.
This study describes the In2S3 semiconductor thin film coating on glass substrate by sol–gel method. The In2S3 thin film samples were prepared and examined by the X-ray diffraction (XRD), the UV–visible optical absorption and transmission study, and the Scanning Electron Microscope (SEM) image analyses. The XRD analysis results show that the In2S3 semiconductor thin films prepared by sol–gel method is formed at T~360–520 °C temperature interval. Band gap energy and optical absorption spectrum analysis of the In2S3 thin films reveal that Eg~2.51 eV for the In2S3 thin films. According to the EDX result the film was In-rich with the In/S = 1.42 ratio. The thickness of prepared In2S3 layer is about 400 nm.  相似文献   

4.
The conductivity of films consisting of a mixture of SnO2 and In2O3 nanocrystals at 200–500°C was studied. Based on the experimental data, it was assumed that in films containing less than 20 wt % In2O3, the current flows along SnO2 nanocrystals. A model of conductivity in these films is presented; it includes an electron transfer from In2O3 to SnO2, which forms positively charged In2O3 nanocrystals that contact the negatively charged SnO2 nanocrystals. In the presence of In2O3 nanocrystals, the activation energy of the electron transfer between SnO2 nanocrystals decreased substantially because of a decrease in the barrier of electron transfer between SnO2 crystals under the action of the negative charge. As a result, a percolation cluster of charged SnO2 crystals formed. At high contents of In2O3 (over 20 wt %), the conductivity increased dramatically. The curve of the temperature dependence of conductivity changed because of the appearance of a percolation cluster of In2O3 nanocrystals, in which the current passed. The conductivity of a mixed film of this kind differed from that of the nanocrystalline film of pure In2O3.  相似文献   

5.
《Arabian Journal of Chemistry》2020,13(12):9166-9178
The current work investigates the morphology, crystallinity and photoelectrochemical (PEC) performance of bismuth sulfide/silver sulfide/zinc oxide nanorods (Bi2S3/Ag2S/ZnO NRAs) photoelectrodes as prepared at different annealing temperature. ZnO NRAs was initially grown hydrothermally, deposited in sequence with Ag2S and Bi2S3 via successive ionic layer adsorption and reaction (SILAR) method before undergoing the annealing treatment. The optimised photoelectrode (Bi2S3/Ag2S/ZnO NRAs-400 °C) possesses an optical bandgap of 1.60 eV extending the absorption edge of ZnO to visible light spectrum. The current-voltage characterization of Bi2S3/Ag2S/ZnO NRAs photoelectrodes revealed that the photocurrent density and photoconversion efficiency were strongly dependent on the annealing temperature. The PEC study shows that the photoelectrode annealed at 400 °C achieved impressive photocurrent density of 12.95 mA/cm2 at +0.5 V (vs Ag/AgCl/saturated KCl) under 100 mW/cm2 illumination with superior photoconversion efficiency of 12.63%. This improvement is due to the cascade-designed band structure alignment of Bi2S3/Ag2S/ZnO/ITO and to the brilliant role of Ag2S as an intermediate layer that reduced random chance of electron-hole (e-h+) pairs recombination and improved the electrons collection efficiency. This work is highly anticipated to give contribution on further utilisation of Bi2S3/Ag2S/ZnO NRAs as a promising semiconductor material in PEC related applications.  相似文献   

6.
硫化铟是一种稳定、低毒性的半导体材料. 本文采用低成本的化学浴沉积方法制备了硫化铟敏化太阳电池, X射线衍射(XRD)、光电子能谱(XPS)和扫描电镜(SEM)结果表明形成了硫化铟敏化的二氧化钛薄膜. 化学浴沉积温度对所得硫化铟敏化薄膜的形貌有显著的影响, 进而影响电池性能. 温度太低时, 化学浴沉积反应速率太低, 只发生少量沉积; 温度太高时, 化学浴沉积反应速率较快, 硫化铟来不及沉积到二氧化钛多孔薄膜内部. 当温度在40℃时, 硫化铟沉积均匀性最好, 薄膜的光吸收性能最佳, 电池的短路电流最大, 另外, 填充因子达到最佳, 为65%, 电池总体光电转换效率为0.32%.  相似文献   

7.
The sensor properties of nanostructured films of SnO2, In2O3, and their combinations for detecting CO in air in the temperature range of 330–520°C were investigated. It was found that SnO2 films show the least sensitivity to CO. Sensitivity grows as the concentration of In2O3 in SnO2 increases, and it reaches its maximum value in pure In2O3. At the same time, the maximum of sensitivity to CO in air shifts towards low temperatures. Sensor response time was found to be about 1 s for the studied SnO2 and In2O3 films, and about 0.5 s for the composite film. The mechanism of sensor sensitivity for the studied metal oxide films in detecting CO in air is discussed.  相似文献   

8.
Photocatalytic oxidation of sulfide into sulfoxide has attracted extensive attention as an environmentally friendly strategy for chemical transformations or toxic chemicals degradation. Herein, we construct a series of In2S3/NU-1000 heterojunction photocatalysts, which can efficiently catalyze the oxidation of sulfides to form sulfoxides as the sole product under LED lamp (full-spectrum) illumination in air at room temperature. Especially, the sulfur mustard simulant, 2-chloroethyl ethyl sulfide (CEES), can also be photocatalytically oxidized with In2S3/NU-1000 to afford nontoxic 2-chloroethyl ethyl sulfoxide (CEESO) selectively and effectively. In contrast, individual NU-1000 and In2S3 show very low catalytic activity on this reaction. The significantly improved photocatalytic activity is ascribed to the constructing of an efficient Z-scheme photocatalysts In2S3/NU-1000, which exhibits the enhancement of light harvesting, the promotion of photogenerated electron-hole separation, and the retention of high porosity of the parent MOF. Moreover, mechanism studies in photocatalytic oxidation reveal that the superoxide radical (.O2) and singlet oxygen (1O2) are the main oxidative species in the oxidation system. This work exploits the opportunities for the construction of porous Z-scheme photocatalysts based on the photoactive MOFs materials and inorganic semiconductors for promoting catalytic organic transformations. More importantly, it provides a route to the rational design of efficient photocatalysts for the detoxification of mustard gas.  相似文献   

9.
Third-order nonlinear optical properties of GeSe2–In2Se3–CsI chalcogenide bulk glasses are studied by Standard pico-second (ps) time-resolved optical Kerr effect (OKE) technique. The obtained χ(3) and n2 at 1064 nm of the glass 72.25GeSe2–23.75In2Se3–5CsI are as large as 10.07 × 10−12 esu and 6.5 × 10−18 m2/W, respectively, more than twice that of As2S3 glass. The relationship between glass compositions and the third-order nonlinear optical responses was analyzed by Raman spectra in terms of structural evolution. It is suggested that the tetrahedral units ([GeSe4] and [InSe4]) play an important role in the ultrafast third-order nonlinear optical responses of these chalcohalide glasses.  相似文献   

10.
In recent years, In2S3 is considered as a promising buffer layer in the fabrication of heterojunction solar cells. Film thickness is one of the important parameters that alters the physical characteristics of the grown layers significantly. The effect of film thickness on the structural, morphological, optical and electrical properties of close space evaporated In2S3 layers has been studied. In2S3 thin films with different thicknesses in the range, 100–700 nm were deposited on Corning glass substrates at a constant substrate temperature of 300 °C. The films were polycrystalline exhibiting strong crystallographic orientation along the (103) plane. The deposited films showed mixed phases of both cubic and tetragonal structures up to a thickness of 300 nm. On further increasing the film thickness, the layers showed only tetragonal phase. With increase of film thickness, both the crystallite size and surface roughness in the films were found to be increased. The optical constants such as refractive index and extinction coefficient of the as-grown layers have been calculated from the optical transmittance data in the wavelength range, 300–2500 nm. The optical transmittance of the films was decreased from 82% to 64% and the band gap varied in the range, 2.65–2.31 eV with increase of film thickness. The electrical resistivity as well as the activation energy was evaluated and found to decrease with film thickness. The detailed study of these results was presented and discussed.  相似文献   

11.
Chemical Transport of Solid Solutions. 8. Transport Phenomena and Ionic Conductivity in the In2O3/SnO2 System Chemical transport reactions are a suitable pathway to the preparation of In2O3‐rich and SnO2‐rich mixed crystals coexisting in the In2O3/SnO2 system (Cl2 as transport agent, 1050 → 900 °C). Experiments are consistent with thermodynamic calculations. The existence of other phases in the system In2O3/SnO2 could not be confirmed. The ionic conductivity of In2O3(SnO2) was investigated.  相似文献   

12.
SnO2@ZnO was synthesized by a new method involving the immobilization of Sn onto zeolitic imidazolate framework-8 (ZIF-8) followed by calcination. The synthesized nanoparticles were characterized as 20–30 nm spherical ZnO particles uniformly dotted with SnO2. When SnO2@ZnO were used as anode material for Zn/Ni batteries, the average specific capacity was approximately 600 mAh g 1 and remained stable after 150 cycles at a rate of 1 C.  相似文献   

13.
One-dimensional (1-D) carbon nanofibers anchored with partially reduced SnO2 nanoparticles (SnO2/Sn@C) were successfully synthesized through a simple electrospinning method followed by carbon coating and thermal reduction processes. The partially reduced Sn frameworks, combined with the carbon fibers, provide a more favorable mechanism for sodiation/desodiation than SnO2. As a result, SnO2/Sn@C exhibits a high reversible capacity (536 mAh g 1 after 50 cycles) and an excellent rate capability (396 mAh g 1 even at 2 C rate) when evaluated as an anode material for sodium-ion batteries (SIBs).  相似文献   

14.
When complexed with alkaline such as potassium hydroxide, sodium hydroxide or lithium hydroxide, films (40 μm thick) of polybenzimidazole (PBI) show conductivity in the 5 × 10−5–10−1 S/cm−1 range, depending on the type of alkali, the time of immersion in the corresponding base bath and the temperature of immersion. It has been shown that PBI has a remarkable capacity to concentrate KOH, even in an alkaline bath of concentration 3 M. The highest conductivity of KOH-doped PBI (9×10−2 S cm−1) at 25°C obtained in this work is higher than the we had obtained previously as optimum values for H2SO4-doped PBI (5 × 10−2 S cm−1 at 25°C) and H3PO4-doped PBI ( 2 × 10−3 S cm−1 at 25°C). PEMFCs based on an alkali-doped PBI membrane were demonstrated, and their characteristics exhibited the same performance as those of PEMFCs based on Nafion® 117. Their development is currently under active investigation.  相似文献   

15.
We have successfully developed a new process to prepare porous poly(methyl methacrylate-co-acrylonitrile) (P(MMA-AN)) copolymer based gel electrolyte. The porous structure in the polymer matrix is achieved by adding SnO2 nanoparticles which are mostly used as gas sensor materials. The quasi-aromatic solvent, NMP, has an electron-repulsion effect with the space charge layer on the surface of SnO2 nanoparticles and forms a special gas–liquid phase interface. Once the cast polymer solution is stored at an elevated temperature to evaporate the solvent, gas–liquid phase separation happens and spherical pores are obtained. The ionic conductivity at room temperature of the prepared gel polymer electrolyte based on the porous membrane is as high as 1.54 × 10−3 S cm−1 with the electrochemical stability up to 5.10 V (vs. Li/Li+). This method presents another promising way to prepare porous polymer electrolyte for practical use.  相似文献   

16.
To avoid an enormous energy crisis in the not-too-distant future, it be emergent to establish high-performance energy storage devices such as supercapacitors. For this purpose, a three-dimensional (3D) heterostructure of Co3O4 and Co3S4 on nickel foam (NF) that is covered by reduced graphene oxide (rGO) has been prepared by following a facile multistep method. At first, rGO nanosheets are deposited on NF under mild hydrothermal conditions to increase the surface area. Subsequently, nanowalls of cobalt oxide are electro-deposited on rGO/Ni foam by applying cyclic-voltammetry (CV) under optimized conditions. Finally, for the synthesis of Co3O4@Co3S4 nanocomposite, the nanostructure of Co3S4 was fabricated from Co3O4 nanowalls on rGO/NF by following an ordinary hydrothermal process through the sulfurization for the electrochemical application. The samples are characterized by using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The obtained sample delivers a high capacitance of 13.34 F cm−2 (5651.24 F g−1) at a current density of 6 mA cm−2 compared to the Co3O4/rGO/NF electrode with a capacitance of 3.06 F cm−2 (1230.77 F g−1) at the same current density. The proposed electrode illustrates the superior electrochemical performance such as excellent specific energy density of 85.68 W h Kg−1, specific power density of 6048.03 W kg−1 and a superior cycling performance (86% after 1000 charge/discharge cycles at a scan rate of 5 mV s−1). Finally, by using Co3O4 @Co3S4/rGO/NF and the activated carbon-based electrode as positive and negative electrodes, respectively, an asymmetric supercapacitor (ASC) device was assembled. The fabricated ASC provides an appropriate specific capacitance of 79.15 mF cm−2 at the applied current density of 1 mA cm−2, and delivered an energy density of 0.143 Wh kg−1 at the power density of 5.42 W kg−1.  相似文献   

17.
Vertically aligned Indium oxide (In2O3) nanoblades are successfully obtained through plasma enhanced chemical vapor deposition (PECVD) approach. By using plasma, the reaction between InCl3 and O2 was able to take place, yielding vertically aligned blade like nanostructure. The novel In2O3 nanostructures exhibit improved electrochemical properties when used as anode materials for lithium-ion batteries. The In2O3 electrode reveals reversible capacity of 580 mAh g?1 after 100 cycles, much higher than that of the In2O3 thin films. The result suggests that proper structural modification of In2O3 thin film may contribute to the improvement of electrochemical properties. The In2O3 electrodes with large reversible capacity and stable cycling performance may provide new insight of anode materials applied in thin film lithium-ion batteries.  相似文献   

18.
A Ru(2,2′-bipyridine-4,4′-dicarboxylic acid)2(NCS)2 [RuL2(NCS)2]/di-(3-aminopropyl)-viologen (DAPV)/In2O3 nanorod system was prepared and applied for photocurrent generation with its maximum surface area . The In2O3 nanorods were prepared using the chemical-bath-deposition method. The various surface morphology of In2O3 were obtained by adding different amounts of 0.1 M HCl solution to the indium-containing solution. The DAPV and RuL2(NCS)2 were easily self-assembled on the indium-oxide surface. The energy levels of RuL2(NCS)2, DAPV, In2O3, and tin-doped indium oxide (ITO) were well arranged, and the system forms an efficient acceptor-sensitizer. The photocurrent measurement of the systems showed excellent photocurrent of 50 nA/cm2 under the air mass (AM) 1.5 condition (100 mW/cm2), which was increased by a factor of ten compared to ones without indium-oxide layers.  相似文献   

19.
Two new compounds, LaInS2O and La5In3S9O3 were synthesized in the La–In–S–O quaternary system. Both compounds crystallize in the orthorhombic system with lattice constants a=20.5421(6) Å, b=14.8490(4) Å, c=3.9829(1) Å for LaInS2O, and a=4.1018(1) Å, b=26.833(1) Å, c=16.023(1) Å for La5In3S9O3. The structure of La5In3S9O3 was solved from single-crystal X-ray data, in the space group Pbcm, with Z=4; it is built from three-atom-thick (100)NaCl layers interleaved with fluorite-type ribbons, and is closely related to the structures of the known lanthanum and indium compounds La10In6S17O6 and La4In5S13. Both compounds LaInS2O and La5In3S9O3 exhibit a yellow color; measurement of their optical gaps gave 2.73 and 2.60 eV, respectively.  相似文献   

20.
Nanostructure single ZnO, SnO2, In2O3 and composite ZnO/SnO2, ZnO/In2O3 and ZnO/SnO2/In2O3 films were prepared using sol?Cgel method. The obtained composite films were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV?CVis spectroscopy. The photocatalytic activities of composite films were investigated using phenol (P), 2,4-dichlorophenol (2,4-DCP), 4-chlorophenol (4-CP) and 4-aminophenol (4-AP) as a model organic compounds under UV light irradiation. Hybrid semiconductor thin films showed a higher photocatalytic activity than single component ZnO, SnO2 and In2O3 films. The substituted phenols degrade faster than phenol. The ease of degradation of phenols is different for each catalyst and the order of catalytic efficiency is also different for each phenol. The use of multiple components offered a higher control of their properties by varying the composition of the materials and related parameters such as morphology and interface. It was also found that the photocatalytic degradation of phenolic compounds on the composite films and single films followed pseudo-first order kinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号