首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The present study is intended to adopt a facile method for preparing a sulphonated green carbon catalyst from date pits biomass. Catalyst synthesis involves in situ carbonization and sulphonation and it has been characterized by following techniques such as XRD, SEM, EDX, TEM, FTIR, TGA, and BET. Surface and internal morphology results exhibited that the synthesized sulphonated carbon material possesses a mesoporous structure, while activated carbon possesses a microporous structure. Furthermore, the Fourier transform infrared (FTIR) spectra confirmed the presence of acidic groups (OH, COOH, and SO3H) in synthesized sulphonated carbon material. Sulphonated carbon material exhibited high acidity (4.7 mmol/g) and good thermal stability. The application of this catalyst for the tertiary butylation of phenol without using any solvent has been investigated. The phenol alkylation reaction showed maximum conversion at reaction condition: temperature (140 °C) with 2 bar (nitrogen gas) pressure with maximum phenol conversion 79.27 wt%, with 68.01% selectivity towards 4TBP+2,4TBP, which is used as an intermediate in antioxidants. The catalyst exhibits comparable catalytic performance up to five reaction cycles. Thus it can be concluded that waste date pits can be successfully employed for green catalyst synthesis and used for reactions involving large molecules.  相似文献   

2.
To investigate the wettability of different oxygen-containing functional group (OFG) surfaces, graphite substrates were used as a model for coal adsorbents. The substrates were modified with COOH, OH, CO, and OCH3. The adsorption-diffusion behavior of H2O molecules/water droplets on different OFG surfaces was investigated using molecular dynamics (MD) simulations with frontier orbital energy difference as a metric for different surface wettability degrees in quantum chemical analysis. The results indicated that the frontier orbital energy difference of the H2O molecule was 3.480, 3.491, 3.631, and 3.680 eV for PhCOOH, PhOH, PhCO, and PhOCH3, respectively. In addition, the equilibrium contact angle, interaction energy, and number of hydrogen bonds after the adsorption equilibrium of water droplets for COOH, OH, CO, and OCH3 surfaces were 22.34°, ?5.03 kcal/mol, and 652; –23.72°, ?4.19 kcal/mol, and 450; 68.01°, ?0.79 kcal/ mol, and 61; 90.51°, ?0.50 kcal/mol, and 28, respectively. The smaller the energy difference between the frontier orbitals of the H2O molecule and the OFG, the smaller the equilibrium contact angle between the water droplet and the OFG surface, the more hydrogen bonds were formed, and the larger the absolute value of the interaction energy, the better the wettability of the surface of the OFG. The order of wettability of the different OFG surfaces was COOH > OH > CO > OCH3, which is consistent with the radial distribution function and the analysis results for the extended area, etc. The results of density functional theory (DFT) calculations and MD simulations exhibited identical patterns, indicating the reasonableness of the simulations. This study may serve as a reference for the suppression of hydrophilicity in low-order coal and the enhancement of the flotation effect.  相似文献   

3.
《中国化学快报》2023,34(3):107609
Palladium-catalyzed non-directed CH functionalization provides an efficient approach for direct functionalization of arenes, but it usually suffers from poor site selectivity, limiting its wide application. Herein, it is reported for the first time that the carboxylic acid ligand of 3,5-dimethyladamantane-1-carboxylic acid (1-DMAdCO2H) can affect the site selectivity during the CH activation step in palladium-catalyzed non-directed CH functionalization, leading to highly para-selective CH olefination of TIPS-protected phenols. This transformation displayed good generality in realizing various other para-selective CH functionalization reactions such as halogenation, and allylation reactions. A wide variety of phenol derivatives including bioactive molecules of triclosan, thymol, and propofol, were compatible substrates, leading to the corresponding para-selective products in moderate to good yields. A preliminary mechanism study revealed that the spatial repulsion factor between carboxylic acid ligand and bulky protecting group resulted in the selective CH activation at the less sterically hindered para-position. This new model non-directed para-selective CH functionalization can provide a straightforward route for remote site-selective CH activations.  相似文献   

4.
《中国化学快报》2020,31(6):1648-1653
Rational modification by functional groups was regarded as one of efficient methods to improve the photocatalytic performance of graphitic carbon nitride(g-C_3 N_4).Herein,g-C_3 N_4 with yellow(Y-GCN) and brown(C-GCN) were prepared by using the fresh urea and the urea kept for five years,respectively,for the first time.Experimental results show that the H2 production rate of the C-GCN is 39.06 μmol/h,which is about 5 times of the Y-GCN.Meantime,in terms of apparent quantum efficiency(AQ.E) at 420 nm,C-GCN has a value of 6.3% and nearly 7.3 times higher than that of Y-GCN(0.86%).The results of XRD,IR,DRS,and NMR show,different from Y-GCN,a new kind of functional group of —N=CH— was firstly in-situ introduced into the C-GCN,resulting in good visible light absorption,and then markedly improving the photocatalytic performance.DFT calculation also confirms the effect of the —N=CH— group band structure of g-C_3N_4.Furthermore,XPS results demonstrate that the existence of —N=CH— groups in C-GCN results in tight interaction between C-GCN and Pt nanoparticles,and then improves the charge separation and photocatalytic performance.The present work demonstrates a good example of "defect engineering" to modify the intrinsic molecular structure of g-C_3N_4 and provides a new avenue to enhance the photocatalytic activity of g-C_3N_4 via facile and environmental-friendly method.  相似文献   

5.
《Tetrahedron letters》2019,60(52):151328
An oxidative multi-functionalization of azaarenes with benzylic CH bonds of methylarenes via iodination/N-benzylation/amidation cascade, to produce N-benzyl-4-iodoisoquinolin-1(2H)-ones and N-benzyl-3-iodoquinolin-2(1H)-ones is developed. The molecular iodine plays a triple role in activating benzylic sp3 CH bond of methylbenzenes, accelerating the oxidation process and serving as iodination reagent. This reaction utilizes cheap and readily available azaarenes and methylarenes as starting materials and proceeds under metal-free conditions to construct C-I, CN and CO bonds consecutively and afford iodo(iso)quinolinones efficiently.  相似文献   

6.
《Tetrahedron letters》2019,60(21):1437-1440
CH bond functionalization for CN and CC bond formations via cross-dehydrogenative coupling (CDC) of N-allylbenzamides with indole as amine source has been developed under a copper-catalyzed condition. To the best of our knowledge, these are the first examples in which different classes of N-containing compounds were directly prepared from the readily available N-allylbenzamides using an inexpensive catalyst-oxidant (CuSO4/TBHP) system. Further, it was applied for the synthesis of α-substituted N-allylbenzamides by using Grignard reagent as nucleophiles.  相似文献   

7.
Bimetallic nanoparticles with core-shell structure and Janus nanoparticles attract much attention because of their unique properties. In this article we demonstrate the capabilities of an efficient method of synthesizing a wide range of bimetallic nanoparticles by the electrical explosion of two wires made of immiscible metals. To synthesize bimetallic nanoparticles, we have chosen model metals whose liquid phase undergoes lamination only within a limited temperature and concentration interval (CuNb and PbCu) and metals whose components laminate in the liquid state over a wide interval of temperatures and concentrations (AgNi and AgFe). It has been shown that the structure type of the resulting bimetallic nanoparticles (homogeneous distribution of the components, core-shell nanoparticles or Janus nanoparticles) depends on the surface energy and the crystalline structure of the metals.  相似文献   

8.
Chemodivergent reactions of 2,2-dimethoxyacetaldehyde and anilines were described, which were established on the basis of either a CC bond cleavage or a rearrangement process of a reaction intermediate. These reactions proceeded in a condition-determined manner with good functional group tolerance. In the first model, 2,2-dimethoxyacetaldehyde reacted with aniline to form a new CN bond, in the presence of O2, via a CC bond cleavage reaction. However, in the second model, by performing the reaction in the absence of O2, Heyns rearrangement occurred and generated a new CO bond to form methyl phenylglycinate. Such condition-determined reactions not only offered the new way for value-added conversion of biomass-derived platform molecule, 2, 2-dimethoxyacetaldehyde, but also provided efficient methods for the synthesis of N-arylformamides and methyl phenylglycinates.  相似文献   

9.
The objective of this work is to synthesize the mussel-mimicking ionic polymers bearing electron-rich 1,3,4-triphenoxy motifs of naturally occurring sesamol [3,4-(methylenedioxy)phenol] I. To our knowledge, the work would represent, for the first time, the ring-opening reaction of epoxide built upon the triphenoxy motifs of hydroxyhydroquinone. Sesamol I upon O-alkylation using epibromohydrin has been converted to its epoxy monomer II in 77% yield. Monomer II under ring-opening polymerization using basic Bu4NOH and Bu4NF as well as by Lewis acid initiator/catalyst MePh3PBr/iBu3Al led to polyether III in 80–99% yields. Monomer II and allyl glycidyl ether (i.e. allyl 2,3-epoxypropyl ether) IV upon polymerization gave random copolymer V of number average molar mass of 9570 g mol−1, which upon thiol-ene reaction with HSCH2CH2NH3+Cl and HSCH2CO2H afforded cationic (^^^NH3+) VI and anionic (^^^CO2) VII copolymers, respectively. For facile deprotection, the methylenedioxy (OCH2O) motifs in VI was activated by its conversion to labile acetoxymethylenedioxy [OCH(OAc)O] unit to obtain VIII in 80% yields. The pendant allyl groups in VIII upon elaboration via thiol-ene reaction using cysteamine hydrochloride and subsequent hydrolysis of [OCH(OAc)O] under a mild condition led to a mussel-inspired cationic copolymer IX (78%) having catechol motifs-embedded pendants of 3,4-dihydroxyphenoxy groups.  相似文献   

10.
《中国化学快报》2023,34(5):107822
A novel photoredox-neutral ring-opening pyridylation of non-prefunctionalized cyclic oximes has been accomplished through phosphoranyl radical-mediated NO/CC bond cleavages followed by radical-radical coupling. This mild acid-, base-, and oxidant-free protocol provides highly site-selective and efficient access to distally pyridylated alkylnitriles, which could be scale-up synthesized and readily converted into skeletally diverse compounds. Notably, the oxidized ground-state photocatalyst generated via the SET oxidation of the highly reducing excited-state photocatalyst by cyanopyridines might initiate the following phosphoranyl radical-mediated deoxygenative process.  相似文献   

11.
The molecular structure of caffeine (3,7-dihydro-1,3,7-trimethyl-1H-purine-2,6-dione) was determined by means of gas electron diffraction. The nozzle temperature was 185 °C. The results of MP2 and B3LYP calculations with the 6-31G7 basis set were used as supporting information. These calculations predicted that caffeine has only one conformer and some of the methyl groups perform low frequency internal rotation. The electron diffraction data were analyzed on this basis. The determined structural parameters (rg and ∠α) of caffeine are as follows: <r(NC)ring> = 1.382(3) Å; r(CC) = 1.382(←) Å; r(CC) = 1.446(18) Å; r(CN) = 1.297(11) Å; <r(NCmethyl)> = 1.459(13) Å; <r(CO)> = 1.206(5) Å; <r(CH)> = 1.085(11) Å; ∠N1C2N3 = 116.5(11)°; ∠N3C4C5 = 121. 5(13)°; ∠C4C5C6 = 122.9(10)°; ∠C4C5N7 = 104.7(14)°; ∠N9–C4=C5 = 111.6(10)°; <∠NCHmethyl> = 108.5(28)°. Angle brackets denote average values; parenthesized values are the estimated limits of error (3σ) referring to the last significant digit; left arrow in parentheses means that this parameter is bound to the preceding one.  相似文献   

12.
In this paper, the process of ammonia borane (AB) hydrolysis generate H2 on the transition metal Fe@Co core-shell structure has been obtained. According to the different roles played by H2O molecules and the number of H2O molecules involved, there are three schemes of reaction paths. Route I does not involve the dissociation of H2O molecules and all H atoms come from AB. Moreover, the H2O molecule has no effect on the breaking of the BH bond or the NH bond. The reaction absorbs more heat during the formation of the second and third H2 molecules. Route II includes the dissociation of H2O molecules and the cleavage of BH or NH bonds, respectively, and the reaction shows a slight exotherm. Route III started from the break of the BN bond and obtained 3H2 molecules through the participation of different numbers of H2O molecules. After multiple comparative analyses, the optimal hydrolysis reaction path has been obtained, and the reaction process can proceed spontaneously at room temperature.  相似文献   

13.
The damage such as microcracks limits the application of hydroxy-terminated polybutadiene (HTPB) elastomer. Here, hydroxy-carboxy-terminated polybutadiene (HCTPB) and Fe3+ selected to facilitate ionic bonds (COO⋯Fe3+) formation is proposed as a strategy to alleviate the intrinsic self-healing problem for HTPB elastomer. In typical HTPB polyurethane elastomer, the elongation at break is 997.3% while the tensile strength is 1.83 MPa, the damage cannot repair by intrinsic covalent or non-covalent, resulting in permanent damage. In contrast, HCTPB is able to offer COO, entailing a COO⋯Fe3+ ionic bonds. Incorporated 6 wt% HCTPB and Fe3+ into the HTPB elastomer elevates the tensile strength to 5.2 MPa, reducing the elongation at break in 877.8%. HCTPB and Fe3+ enhance the self-repair rate reaches up to 92% after repairing at 80 °C for 10 h after cutting for HTPB elastomer. This strategy has immediate implications for using COO⋯Fe3+ ionic bonds to improve the performance of HTPB polyurethane elastomer devices.  相似文献   

14.
《中国化学快报》2023,34(3):107289
The on-purpose direct propane dehydrogenation (PDH) has received extensive attention to meet the ever-increasing demand of propylene. In this work, by means of density functional theory (DFT) calculations, we systematically studied the intrinsic coordinating effect of Fe single-atom catalysts in PDH. Interestingly, the N and P dual-coordinated single Fe (Fe-N3P-C) significantly outperform the Fe-N4C site in catalysis and exhibit desired activity and selectivity at industrial PDH temperatures. The mechanistic origin of different performance on Fe-N3P-C and Fe-N4C has been ascribed to the geometric effect. To be specific, the in-plane configuration of Fe-N4 site exhibits low H affinity, which results in poor activity in CH bond activations. By contrast, the out-of-plane structure of Fe-N3P-C site exhibits moderate H affinity, which not only promote the CH bond scission but also offer a platform for obtaining appropriate H diffusion rate which ensures the high selectivity of propylene and the regeneration of catalysts. This work demonstrates promising applications of dual-coordinated single-atom catalysts for highly selective propane dehydrogenation.  相似文献   

15.
The longest C-C single bond of 1.990(4) Å known thus far is observed in the single crystal X-ray structure of 1,2-(NHMes)2-o-carborane (Mes = 2,4,6-trimethylphenyl), which is readily synthesized via a one-pot process.  相似文献   

16.
《Tetrahedron letters》2019,60(22):1481-1486
A regioselective addition of C7H bonds of indolines to formaldehyde is reported to synthesize a variety of C-7 hydroxymethylated indolines via a Ru(II)-catalyzed CH activation. More importantly, a one-pot CH formylation procedure is also developed to synthesize valuable C7-formyl indoles.  相似文献   

17.
《Vibrational Spectroscopy》2009,49(2):259-262
In order to evidence the structural changes induced by CuO and V2O5 in the phosphate glass network and their modifier or former role, x(CuO·V2O5)(100  x)[P2O5·CaO] glass system was prepared and investigated using Raman spectroscopy (0  x  40 mol%).Raman spectra of the studied glasses present the specific bands of the phosphate glasses at low concentration of transition metal (TM) ions, but at higher concentration (x > 7 mol%) a strong depolymerization of the phosphate network appears; non-bridging oxygen atoms are involved in VOP and CuOP bonds and new short units are formed. For a high concentration of V2O5 (x > 10 mol%) the Raman bands of V2O5 prevail in the spectra; this fact suggests that vanadium oxide imposes its structural units in the network acting thus as a network glass former.2D correlation analysis was also applied for the concentration-dependent Raman spectra in order to verify the assignments of the vibration modes and to find correlations in the changes induced by TM ions content. 2D correlation maps indicate a good correlation between the bands at ∼705 cm−1 assigned to POP stretching vibration and at ∼1175 cm−1 assigned to PO2 groups which suggest the depolymerization of the phosphate network. The correlation between the 1270 cm−1 and 930 cm−1 bands also suggests that V2O5 oxide is responsible for PO bonds breaking and POV formation.  相似文献   

18.
The contamination of lead in wastewater causes water quality problems, which is toxic to aquatic organisms and environment, so wastewater treatment is required before discharging to receiving water. Chicken eggshell powder (CP) and chicken eggshell powder-doped iron (III) oxide-hydroxide (CPF) were synthesized, characterized, and investigated lead removal efficiencies by batch experiments, adsorption isotherms, kinetics, and desorption experiments. The specific surface area and pore volume of CPF were higher than CP, whereas the pore diameter size of CPF was smaller than CP. The phase structures of both materials demonstrated semi-crystalline phases with presenting peaks of calcium carbonate. Their surface morphologies were irregular, rough, and uneven surfaces. In both materials, they detected carbon, calcium, oxygen, OH, NH, CO, CO, and CH. The point of zero charges (pHpzc) of CP and CPF were 4.47 and 4.83. For batch experiments, CPF demonstrated a higher lead removal efficiency than CP because of spending less material dosage and contact time than CP, and both materials had high lead removals at a lead concentration of 50 mg/L by more than 95 %. Thus, the addition of iron (III) oxide-hydroxide helped to increase material efficiency for lead adsorption. CP corresponded to the Langmuir model while CPF corresponded to the Freundlich model. In addition, both materials corresponded to a pseudo-second-order kinetic model relating to a chemisorption process. Moreover, both materials could be reusable for more than 5 cycles for lead adsorption of more than 77 %. Therefore, CPF was a potential material to apply for lead removals in industrial applications.  相似文献   

19.
《中国化学快报》2023,34(1):107569
We report herein an I2/PhI(OAc)2 catalytic system for the pragmatic construction of CN bonds through CH/NH oxidative coupling protocol. Divergent pyrrolo[2,3-b]indoles were efficiently prepared via I2-catalyzed intramolecular C–H amination reactions from (E/Z)-2-indolylenamines under metal-free conditions. Various functional groups are tolerated under mild reaction conditions and the resulting pyrrolo[2,3-b]indoles were obtained with mostly good to excellent yields. It was interesting to observe that both the (E)- and (Z)-isomers of the starting materials were efficiently transformed into the targeted product. The I+-mediated catalytic cycle was proposed based on mechanistic studies for this reaction.  相似文献   

20.
《中国化学快报》2020,31(5):1301-1304
Palladium-catalyzed highly meta-selective CH iodination of phenylacetic acid, benzylphosphonate and benzylsulfonate scaffolds with molecular I2 is developed using a pyridine-type template. The practical ester linkages enable the directing template easily installed and readily removed. The substrate scope is broad, and alkyl, methoxyl, trifluomethyl, and halo substituents are compatible with this reaction. Further transformations of ibuprofen iodide intermediates by Pd-catalyzed CC and C–heteroatom bond formation illustrate the broad utility of this method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号