首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Many various industries use synthetic dyes as their raw materials. These dyes have triggered environmental problems because of the occurring effluents, and one of the environmentally safe solutions for this problem is biodegradation through microorganisms. Reactive Black 5 (RB5) dye degradation was performed by utilizing a metal-organic framework Universitetet i Oslo-66 (UiO-66) and Gloeophyllum trabeum (GT) fungus biocomposite. The UiO-66@GT composite was fabricated by inoculating the fungal culture in flasks with the PDB medium that contained UiO-66. This biocomposite was applied to decolorize and degrade RB5 dye, while pure GT culture can decolorize about 36.47% in five days. The percentage of RB5 decolorization was shown to be increased with the addition of UiO-66; the composite could decolorize RB5 up to 72.55% after five days incubation period. Moreover, the optimum conditions for the 100% targeted rate of RB5 decolorization found by the Response Surface Methodology (RSM) are: initial RB5 concentration (72.54 mg L-1), pH (6.53), and temperature (38.06 °C). Two novel metabolites from RB5 decolorization by the composite were detected based on LCMS-QTOF analysis and were used to propose a degradation pathway: 6-((1-amino-7,8-dihydroxy-6-sulfonaphthalen-2-yl) diazinyl) cyclohexa-2,4-dien-1-ide (m/z = 360) and 3,4-diamino-5,6-dihydroxy-1,2,7,8-tetrahydronaphthalene-2,7-disulfonic acid (m/z = 354).  相似文献   

2.
Toxic dye removal, one of the most serious and common industrial pollutants released into natural water, is a critical issue for modern civilization. In this study, a series of UiO-66 composites was synthesized with addition of HKUST-1 using solvothermal method, which was used to remove RBBR dye. The structure, morphology and surface area of the composites were studied by several analyses. HK(5)/UiO-66 possessed a specific surface area of 557.63 m2/g and showed an adsorption capacity of 400 mg/g, higher than that of UiO-66 (261.92 mg/g) with a contact time of 50 min. Several adsorption parameters that influenced RBBR removal efficiency were investigated, such as pH, initial dye concentrations, and temperature. All the composites followed pseudo-first order kinetics and Langmuir isotherm adsorption. Moreover, the adsorption process occurred exothermically and spontaneously, indicating that the adsorption process was advantageous in terms of energy. The possible adsorption mechanism and cost analysis of the adsorbent were also studied in detail.  相似文献   

3.
氢能是一种能量密度高、储量大、可再生、零污染的新能源。光催化水分解制氢是一种绿色、清洁的能源转换技术,被认为是一种有效的制氢方法。UiO-66-NH2是一种可见光响应、稳定性良好的金属有机骨架材料,但存在可见光响应范围有限、导电性差、载流子复合率高等问题。研究者们采用金属粒子掺杂、染料敏化、金属纳米粒子负载等多种方法对UiO-66-NH2进行改性,提升UiO-66-NH2在光催化水分解制氢反应中的性能,并报道了许多研究成果。因此,本文对近年来报道的有关增强UiO-66-NH2光催化水分解制氢性能的方法进行了综述,并对后续的发展提出了建议,以期为UiO-66-NH2在光催化水分解制氢中应用研究提供参考。  相似文献   

4.
矿山开采、 金属冶炼、 新型金属材料的发展以及城市供水系统老化所造成的重金属(铅、 镉、 汞、 砷、 铬、 铜及锌等)污染问题已日趋严重. 传统的水处理方法很难有效地去除低浓度的重金属污染物. 本文以天然木材为载体, 采用溶剂热合成法, 在木材三维孔道中原位合成UiO-66-NH2金属有机框架材料(MOFs)纳米颗粒, 制备了UiO-66-NH2/wood复合膜材料. 该复合膜材料对去除水中微量重金属离子(Hg2+, Cu2+)表现出优异的性能. 当处理速率为1.1×102 L?m-2?h-1时, 该复合膜材料去除水中微量重金属离子的效率仍可达到90%以上, 且处理后水中重金属离子含量低于国家饮用水标准. 这可归因于木材本身独特的三维孔道结构, 在提高水通量的同时, 还可以增加水溶液中重金属离子与MOFs颗粒的接触机会, 以及孔道内均匀分布的UiO-66-NH2 MOFs颗粒中的—NH2可以与重金属离子通过配位作用相结合. 该UiO-66-NH2/wood复合膜材料还具有良好的重复利用性, 在连续6次循环使用后其去除效率无明显变化, 有望进行实际应用.  相似文献   

5.
The purpose of this research is to use a simple method to prepare magnetic modified corncobs (MCBs) with good adsorption performances for Congo Red (CR). The adsorption was analyzed by Fourier transform infrared spectroscopy and x-ray diffraction. The maximal adsorption capacity of the MCB for CR was 198.2 mg/g and about 5.5-fold for unmodified corncob. Potassium ion was more positive effect onto adsorption than sodium ion. The dye uptake process obeyed the pseudo-second-order kinetic expression. The best-fitted data were obtained with the Langmuir model. The as-prepared magnetic modified sorbent had a potential in the dyeing industry wastewater treatment.  相似文献   

6.
This comprehensive experiment has successfully introduced the frontier of scientific research into undergraduate laboratory teaching. A magnetic Co/C nanocomposite was synthesized by using ZIF-67 as the precursor. Upon calcination at high temperature in inert atmosphere, ZIF-67 was degraded and carbonized to form Co/C nanocomposite. The adsorption performance of Co/C nanocomposite for Congo Red was investigated in detail. The structure and composition of the nanocomposite were investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). The concentration of Congo Red was determined by UV-Vis spectrophotometry. The kinetics data was fitted with the pseudo-first-order and pseudo-second-order kinetic models. The adsorption isotherms were analyzed according to Langmuir and Freundlich isotherm models. This experiment covers the synthesis of inorganic-organic hybrid material, characterization of materials, concentration determination of dyes, analysis of dynamics data and adsorption isotherms. Therefore, this experiment enables students to practice their experimental skills, increase their interest in scientific research, and broaden their professional knowledge.  相似文献   

7.
以UiO-66为前驱体制得UiO-66/CoSO4复合材料,借助扫描电子显微镜、透射电子显微镜、元素分析和比表面积分析等手段对复合材料的微观形貌和结构进行表征,采用吸附平衡实验,系统考察该复合材料的吸附性能.结果表明,在相同条件下UiO-66/CoSO4复合材料比UiO-66对盐酸左氧氟沙星的去除率提高26.5%,且复合材料在30 min对盐酸左氧氟沙星的吸附达到平衡,最大吸附容量为108.4 mg·g-1,其吸附特性符合假二级动力学模型.该UiO-66/CoSO4复合材料制备过程简单,对实际环境水样和土样中盐酸左氧氟沙星的去除率在94.7%以上,且经过5次再生循环使用后,吸附效率无明显下降.  相似文献   

8.
UiO-66 and chitosan/UiO-66 composites were successfully synthesized by varying the mass addition of chitosan which were 0%, 2.5%, 5%, 10%, and 20% of the mass of UiO-66, denoted as UiO-66, Cs(2.5)/UiO-66, Cs(5)/UiO-66, Cs(10)/UiO-66, and Cs(20)/UiO-66, respectively. UiO-66 was modified with chitosan using the impregnation process. The X-ray diffraction patterns of the synthesized materials showed characteristic peaks at 2θ of 7.25° and 8.39°, which matched to that of the reported UiO-66. In addition, the Fourier transform infrared spectroscopy spectra of the materials showed absorption bands at the same wavenumber as UiO-66 and chitosan previously reported. The surface morphology of UiO-66 observed from scanning electron microscopy images was in the form of agglomerated small cube particles, where the smaller particles were observed for Cs(10)/UiO-66. From the N2 adsorption isotherms, it was found that the Brunauer-Emmett-Teller surface areas of UiO-66, Cs(5)/UiO-66, and Cs(10)/UiO-66 materials were 825.7 m2/g, 835.4 m2/g, and 882.2 m2/g, respectively. The results of the study on adsorption of methyl orange in aqueous solutions showed that Cs(5)/UiO-66 had the highest adsorption capacity of 370.37 mg/g and followed the pseudo–second-order adsorption kinetic with a Langmuir isotherm model.  相似文献   

9.
通过水热法制备了一种复合光催化剂Bi_2WO_6/UiO-66,探究了模板剂乙酸(CH_3COOH)对Ui O-66形貌的影响和2种中心元素Bi与Zr的不同物质的量之比对光催化性能的影响。通过XRD、SEM、N_2吸附-脱附、UV-Vis DRS、XPS等对催化剂的物相、形貌、比表面积、光吸收性能、元素组成等进行表征。实验结果表明,当n_(Bi)∶n_(Zr)=2∶1时,Bi_2WO_6/UiO-66对罗丹明B(RhB)的光催化活性最高,可见光照射50 min后,RhB的相对浓度降低98.5%。经过5次循环利用实验,催化剂的光催化活性没有明显下降,说明复合光催化剂的稳定性高。根据自由基捕获实验证明了空穴(h~+)为光催化中起决定性作用的活性物质,结合电化学测试以及UV-Vis DRS表征提出了可能的光催化降解机理。  相似文献   

10.
半导体光催化剂作为一种可再生和可持续降解有机污染物的材料被广泛研究.K2Ti4O9由于无毒、低成本、稳定的物理化学性质和独特的光电性能被应用于光催化反应.但是,K2Ti4O9只能被紫外光所激发(因为其带隙能为3.2-3.4 eV),所以大量工作致力于研究如何降低其带隙能,从而使其可以被太阳光中的可见光激发,扩大其应用范围.其中N元素掺杂K2Ti4O9 (N-K2Ti4O9)是最常见的方法之一.单纯的N-K2Ti4O9虽然具有光催化能力,但其吸附容量太小,不能有效地将溶液中的有机物吸附至其表面,因而催化降解有机物效果不显著.UiO-66-NH2是一种Zr基金属-有机骨架化合物,它对阳离子染料具有良好的吸附性能,且具有一些常规无机半导体光催化材料所没有的性质.本文将UiO-66-NH2和N-K2Ti4O9经高温焙烧制备了N-K2Ti4O9/UiO-66-NH2复合材料,发现该复合材料不仅具有UiO-66-NH2优良的吸附性能,还因为复合提高了其光电性能,从而大大提高了光催化性能,当N-K2Ti4O9/ZrCl4质量比为3∶7时光催化性能最佳.为了考察N-K2Ti4O9/UiO-66-NH2复合材料的微观形貌、复合结构及光生电子-空穴分离效率,首先通过场发射透射电镜分析N-K2Ti4O9,UiO-66-NH2和N-K2Ti4O9/UiO-66-NH2(3∶7)复合材料的形貌,然后采用能量散射谱测定复合材料的元素分布,并利用N-K2Ti4O9和UiO-66-NH2中代表性元素K,Ti和Zr的分布判断复合材料的复合结构,最后运用高分辨电镜观察复合材料中N-K2Ti4O9和UiO-66-NH2的异质结界面,确定了两者是通过自组装复合在一起,而不是简单的物理混合.X射线衍射结果表明,复合材料具有N-K2Ti4O9和UiO-66-NH2两者的特征衍射峰,仅在强度和位置上略有变化.这可能是N-K2Ti4O9/UiO46-NH2异质结构所致.通过UiO-66-NH2和N-K2Ti4O9的紫外-可见吸收光谱,用公式计算出它们的带隙能分别是2.645和3.195 eV,与文献结果基本一致.由于光催化剂的光生载流子迁移速率同样影响光催化性能,因此我们在CHI-660D电化学工作站上控制光源反复开关数次,同时记录N-K2Ti4O9,UiO-66-NH2和N-K2Ti4O9/UiO-66-NH2(3∶7)的光响应电流,发现N-K2Ti4O9/UiO-66-NH2(3∶7)复合材料展现出最高的光响应电流强度,表明其具有最高的光生载流子迁移速率和最低的光生载流子复合速率.可见,N-K2Ti4O9和UiO-66-NH2复合有利于光生载流子迁移,这可能是由于N-K2Ti4O9/UiO-66-NH2异质结界面有利于光生载流子在两种材料之间迁移所致.测试了N-K2Ti4O9/UiO-66-NH2(3∶7)复合材料对不同染料的光催化降解性能.结果发现,该材料对阳离子型染料(罗丹明B和亚甲基蓝)的光催化性能远远高于对阴离子型染料(甲基橙和刚果红).这是由于它对阳离子型染料的吸附性能远高于对阴离子型染料,因此N-K2Ti4O9/UiO-66-NH2复合材料对阳离子型染料具有选择性光催化.  相似文献   

11.
Zirconium-based metal-organic frameworks (MOFs) have attracted extensive attention owing to their robust stability and facile functionalization. However, they are generally prepared in common volatile solvents within a long reaction time. Here, we introduced environmentally friendly, cheap, and acid-based tunable deep eutectic solvents (DESs) formed from 2-methyl imidazole (MIm) and p-toluenesulfonic acid (PTSA) which significantly accelerated the assembly of zirconium-based MOF (UiO-66) without any aggressive additives. PTSA in acidic DES and ZrOCl2 preliminarily formed Zr(IV) oxo organic acid framework, whereas basic DES completely dissolved the ligand of UiO-66. The strong hydrogen bond effect of PTSA and MIm efficiently accelerated the linker exchange between zirconium oxo organic coordination in acidic DES and benzenedicarboxylate linker in weak basic DES within a reaction time of 2 h at 50 °C. Thus, UiO-66 was quickly assembled with small particle sizes and used as an excellent catalyst for the acetalization of benzaldehyde and methanol. Therefore, the developed synthesis approach provides a new green strategy to quickly prepare and design various structures of metal-based compounds under mild reaction conditions.  相似文献   

12.
Upgrading furfural (FAL) to cyclopentanone (CPO) is of great importance for the synthesis of high-value chemicals and biomass utilization. The hydrogenative ring-rearrangement of FAL is catalyzed by metal-acid bifunctional catalysts. The Lewis acidity is a key factor in promoting the rearrangement of furan rings and achieving a high selectivity to CPO. In this work, highly dispersed Pd nanoparticles were successfully encapsulated into the cavities of a Zr based MOF, UiO-66-NO2, by impregnation using a double-solvent method (DSM) followed by H2 reduction. The obtained Pd/UiO-66-NO2 catalyst showed a significantly better catalytic performance in the aforementioned reaction than the Pd/UiO-66 catalyst due to the higher Lewis acidity of the support. Moreover, by using a thermal treatment. The Lewis acidity can be further increased through the creating of missing-linker defects. The resulting defective Pd/UiO-66-NO2 exhibited the highest CPO selectivity and FAL conversion of 96.6% and 98.9%, respectively. In addition, the catalyst was able to maintain a high activity and stability after four consecutive runs. The current study not only provides an efficient catalytic reaction system for the hydrogenative ring-rearrangement of furfural to cyclopentanone but also emphasizes the importance of defect sites.  相似文献   

13.
H. Chen  J. Zhao 《Adsorption》2009,15(4):381-389
The organo-attapulgite was prepared using hexadecyltrimethylammonium bromide (HTMAB) with equation equivalent ratio of HTMAB to CEC of attapulgite added and then used as adsorbent for the removal of Congo red (CR) anionic dye from aqueous solution. Adsorbent characterizations were investigated using infrared spectroscopy and X-ray diffraction. The effects of contact time, temperature, pH and initial dye concentration on organo-attapulgite adsorption for CR were investigated. The results show that the amount adsorbed of CR on the organo-attapulgite increase with increasing dye concentration, temperature, and by decreasing pH. The adsorption kinetics was studied with the pseudo-first-order, pseudo-second-order and intraparticle diffusion models, and the rate constants were evaluated. It was found that the adsorption mechanisms in the dye/organo-attapulgite system follow pseudo-second-order kinetics with a significant contribution of film diffusion. Equilibrium data fitted perfectly with Langmuir isotherm model compared to Freundlich isotherm model, and the maximum adsorption capacity was 189.39 mg g−1 for the adsorbent. Kinetic and desorption studies both suggest that chemisorption should be the major mode of CR removal by the organo-attapulgite. The results indicate that HTMAB-modified attapulgite could be employed as low-cost material for the removal of Congo red anionic dye from wastewater.  相似文献   

14.
New lanthanide metal-organic framework(MOF) nano/microrods, [C4mim]Cl-Eu-MOF, [C8mim]Cl-Eu- MOF and [C12mim]Cl-Eu-MOF, were conveniently synthesized via an ionic liquid-assisted hydrothermal method and characterized by means of powder X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FTIR), thermogravimetric analysis(TG) and transmission electron microscopy(TEM). The obtained nano/microrods with low surface areas were efficient for the removal of Congo red(CR) from aqueous solutions. Under the optimum conditions, [C4mim]Cl-Eu-MOF with a specific surface area of 5.1 m2/g exhibited an ultrahigh adsorption capacity of 2606 mg/g toward CR. Notably, the adsorption efficiency of [C4mim]Cl-Eu-MOF for CR via nano/microscale stacking can be directly demonstrated by TEM. In-depth understanding of CR removal by [C4mim]Cl-Eu-MOF nano/microrods was also supported by FTIR, Raman spectroscopy and zeta potential analyses.  相似文献   

15.
Nanocrystalline Fe2O3 powder was synthesized by a simple chemical route involving FeCl3 and NaOH. The Fe2O3 powder thus prepared was characterized using x-ray diffraction study, scanning electron microscopy, and Fourier transform infrared spectroscopy. The adsorption properties of crystalline Fe2O3 powder have been investigated with an aim to explore a possible low cost and efficient way to remove Congo red (CR) from waste water. Fe2O3 powder was found as an excellent adsorbent for CR from aqueous medium. Adsorption capacity as much as 203.66 mg g?1 is reported at room temperature. Effect of different experimental parameters such as reaction pH, initial CR dye concentration, adsorbent dose, and reaction temperature were studied on adsorption capacity of Fe2O3 powder and modeled by artificial neural network (ANN). Optimal ANN structure (4–5–1) shows minimum mean squared error (MSE) of 0.00235 and determination coefficient (R2) of 0.991 with Levenberg–Marquardt algorithm. Isotherm analysis of experimental data exhibited better fit to the Langmuir isotherm. The adsorption process was found to follow second-order kinetics as depicted by the analysis of experimental results. Thermodynamic study shows that the adsorption process is endothermic, spontaneous, and thermodynamically favorable in the temperature range of 27°C to 60°C.  相似文献   

16.
通过溶剂热法成功制备了一种基于金属有机骨架(MOF)的复合材料Cu-Cu2O/UiO-66-NH2,采用傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)对材料进行全面表征。在空气作氧化剂条件下,以苯甲醇氧化为苯甲醛作为模型反应,系统地考察了溶剂、温度、催化剂各组分用量等因素对催化效果的影响。研究结果表明,该复合催化剂在醇选择性氧化反应中表现出优异的催化性能,60℃下反应5 h便可将苯甲醇定量转化为苯甲醛,并对其他苄基醇、烯丙基醇和杂芳基醇等底物也展现出良好活性。此外,循环利用3次后,该催化剂活性几乎不变,表明其具有良好的稳定性和重复使用性。  相似文献   

17.
Composites of metal-organic frameworks and carbon materials have been suggested to be effective materials for the decomposition of chemical warfare agents. In this study, we synthesized UiO-66-NH2/zeolite-templated carbon (ZTC) composites for the adsorption and decomposition of the nerve agents sarin and soman. UiO-66-NH2/ZTC composites with good dispersion were prepared via a solvothermal method. Characterization studies showed that the composites had higher specific surface areas than pristine UiO-66-NH2, with broad pore size distributions centered at 1–2 nm. Owing to their porous nature, the UiO-66-NH2/ZTC composites could adsorb more water at 80% relative humidity. Among the UiO-66-NH2/ZTC composites, U0.8Z0.2 showed the best degradation performance. Characterization and gas adsorption studies revealed that beta-ZTC in U0.8Z0.2 provided additional adsorption and degradation sites for nerve agents. Among the investigated materials, including the pristine materials, U0.8Z0.2 also exhibited the best protection performance against the nerve agents. These results demonstrate that U0.8Z0.2 has the optimal composition for exploiting the degradation performance of pristine UiO-66-NH2 and the adsorption performance of pristine beta-ZTC.  相似文献   

18.
通过溶剂热法成功制备了一种基于金属有机骨架(MOF)的复合材料Cu-Cu2O/UiO-66-NH2,采用傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)对材料进行全面表征。在空气作氧化剂条件下,以苯甲醇氧化为苯甲醛作为模型反应,系统地考察了溶剂、温度、催化剂各组分用量等因素对催化效果的影响。研究结果表明,该复合催化剂在醇选择性氧化反应中表现出优异的催化性能,60℃下反应5 h便可将苯甲醇定量转化为苯甲醛,并对其他苄基醇、烯丙基醇和杂芳基醇等底物也展现出良好活性。此外,循环利用3次后,该催化剂活性几乎不变,表明其具有良好的稳定性和重复使用性。  相似文献   

19.
通过水热法合成具有协同机制的三元复合材料Bi2Fe4O9/g-C3N4/UiO-66,研究表明三元复合光催化剂的催化活性要高于二元材料和纯材料。这主要是由于Bi2Fe4O9更易于和g-C3N4结合形成稳定的Z-scheme异质结结构,使三元复合材料增强了可见光响应能力,提高了电子-空穴分离能力,增强了空穴和电子的氧化还原能力。  相似文献   

20.
通过水热法合成具有协同机制的三元复合材料Bi2Fe4O9/g-C3N4/UiO-66,研究表明三元复合光催化剂的催化活性要高于二元材料和纯材料。这主要是由于Bi2Fe4O9更易于和g-C3N4结合形成稳定的Z-scheme异质结结构,使三元复合材料增强了可见光响应能力,提高了电子-空穴分离能力,增强了空穴和电子的氧化还原能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号