首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Platinum nanoparticles (PtNPs) were green synthesized by using chloroplatinic acid (H2PtCl6) as raw material and Nymphaea tetragona (N. tetragona) flower extract as the capping and reducing agents to improve skin health. Size-tunable PtNPs were obtained by volume ratios of the initial H2PtCl6/N. tetragona of 1:1 and 1:4, in which PtNPs prepared by the ratio of 1:1 and 1:4 was defined as L1-PtNPs and L4-PtNPs. Their characterizations were investigated by UV–visible spectroscopy, TEM, XRD and FTIR spectroscopy. TEM image analysis showed the particles were well dispersed with the average particle diameters of L1 and L4-PtNPs were 4.04 ± 1.31 nm and 2.01 ± 0.80 nm, respectively. The synthesized PtNPs showed effective antioxidant property and anti-tyrosinase activity in vitro. And further experiments exclaimed that PtNPs can significantly inhibit tyrosinase activity and UVB-induced melanin biosynthesis in A375 cells. This study also revealed PtNPs can promote collagen I biosynthesis in HFF-1 cells by activating the TGF-β/Smad pathway. This research showed the potential efficacy of PtNPs in the skin field and provided evidence for people to consider applying PtNPs to skin protection.  相似文献   

2.
Natural products continue to provide inspiring moieties for the treatment of various diseases. In this regard, investigation of wild plants, which have not been previously explored, is a promising strategy for reaching medicinally useful drugs. The present study aims to investigate the antidiabetic potential of nine Amaranthaceae plants: Agathophora alopecuroides, Anabasis lachnantha, Atriplex leucoclada, Cornulaca aucheri, Halothamnus bottae, Halothamnus iraqensis, Salicornia persia, Salsola arabica, and Salsola villosa, growing in the Qassim area, the Kingdom of Saudi Arabia. The antidiabetic activity of the hydroalcoholic extracts was assessed using in vitro testing of α-glucosidase and α-amylase inhibitory effects. Among the nine tested extracts, A. alopecuroides extract (AAE) displayed potent inhibitory activity against α-glucosidase enzyme with IC50 117.9 µg/mL noting better activity than Acarbose (IC50 191.4 µg/mL). Furthermore, AAE displayed the highest α- amylase inhibitory activity among the nine tested extracts, with IC50 90.9 µg/mL. Based upon in vitro testing results, the antidiabetic activity of the two doses (100 and 200 mg/kg) of AAE was studied in normoglycemic and streptozotocin (STZ)-induced diabetic mice. The effects of the extract on body weight, food and water intakes, random blood glucose level (RBGL), fasting blood glucose level (FBGL), insulin, total cholesterol, and triglycerides levels were investigated. Results indicated that oral administration of the two doses of AAE showed a significant dose-dependent increase (p < 0.05) in the body weight and serum insulin level, as well as a significant decrease in food and water intake, RBGL, FBGL, total cholesterol, and triglyceride levels, in STZ-induced diabetic mice, compared with the diabetic control group. Meanwhile, no significant differences of both extract doses were observed in normoglycemic mice when compared with normal control animals. This study revealed a promising antidiabetic activity of the wild plant A. alopecuroides.  相似文献   

3.
The current research was intended to establish the impact of Silibinin nanoparticles (SB-APSP) produced by the antisolvent precipitation with a syringe pump (APSP). The in-vivo bioavailability and hepatoprotective activity of SB-APSP were evaluated in experimental animals. To determine the pharmacokinetic parameters, silibinin and its nanoparticles were given orally to rabbits at a dose of 50 mg/Kg body weight. Blood samples were drawn at different time intervals and were analyzed using HPLC. The bioavailability of un processed silibinin was lower as compared to silibinin nanoparticles (3.45 ± 0.07 and 23.76 ± 0.07 µg/mL respectively). The AUC and Cmax of SB-APSP were found to be 15.56 and 6.88 folds greater for nanoparticles when compared to silibinin. Hepatoprotective study in Male Sprague Dawley rats revealed that SB-APSP provide better recovery of the damaged liver cell induced by CCl4. Histopathology of the liver revealed that SB-APSP provide better protection to the liver cells from the damage induced by CCl4 and maintained the hepatic lobule histopathology more efficiently. It was concluded that the SB-APSP can more effectively protect the liver in experimental animals in a far better way compared to the un-processed Silibinin and could be used as an efficient hepatoprotective agent.  相似文献   

4.
The liver is a crucial organ among body organs due to its wide functions, in particular, detoxification and metabolism. Exposure to detrimental chemicals or viral infections may provoke liver dysfunction and ultimately induce liver tissue damage. Finding natural substances for liver disease treatment to overcome the conventional treatments’ side effects has attracted the attention of researchers worldwide. Our current work was conducted to investigate the hepato-therapeutic activities of essential oil (EO) isolated from Tagetes patula flowers. EO was extracted using the hydro-distillation (HD) technique and its chemical composition was identified by GC/MS. Then, the hepatic treatment potential of extracted EO was evaluated in vivo against CCL4 in rats. HD of T. patula flowers yielded highly chemical constituents of EO along with significant antioxidant potential. A coherent molecular network was fashioned via the Global Natural Products Social Molecular Networking (GNPS) to visualize the essential components and revealed that the sesquiterpene (E)-β-caryophyllene was the most predominant volatile constituent which accounted for 24.1%. The treatment of CCL4 led to significant induced oxidative stress markers malonaldehyde, total protein, and non-protein sulfhydryl, as well as elevated serum aminotransferase, gamma-glutamyl transferase, alkaline phosphatase, and bilirubin. In addition, it disrupted the level of lipid profile. The post-treatment using T. patula EO succeeded in relieving all toxic effects of CCl4 and recuperating the histopathological signs induced by CCL4. Silymarin was used as a standard hepatoprotective agent. The obtained results demonstrated that the extracted EO exerted high protective activities against the toxicity of CCL4. Moreover, the T. patula flowers EO can be used as a natural remedy to relieve many contemporary liver diseases related to oxidative stress.  相似文献   

5.
The aim of the present study was to investigate the chemical constituents and hepatoprotective effect of Ficus ingens (Miq.) Miq. (Moraceae) extract against carbon tetrachloride-induced acute liver damage in male Wistar albino rats. The ethanol extract of F. ingens, was subjected to phytochemical study. In addition, its acute and sub-chronic toxicities were assessed. Eight compounds were isolated from this plant and identified as β-sitosterol, β-sitosterol glucoside, chryasophanol, 7-hydroxy-2,5 dimethyl chromen-4-one, quercetin, Aloe emodin glucoside, rutin and Patuletin-3′-O-methyl-3-O-rutinoside. The structure elucidation was based on 1H and 13C NMR, proton–proton correlation spectroscopy (1H–1H Cosy), distortionless enhancement by polarization transfer (DEPT), Heteronuclear Multiple-Quantum Correlation (HMQC), and heteronuclear multiple bond correlations spectrum (HMBC). Hepatotoxicity induced with CCl4 was evidenced by elevation of liver marker enzymes (ALT, AST, ALP and LDH) and TB content in serum. In addition, antioxidant enzymes were drastically inhibited with significant reduction of GSH and increased LPO in liver homogenate of CCl4-intoxicated rats. Pre-treatment with F. ingens (200 and 400 mg/kg) and silymarin (50 mg/kg) avoided the changes observed in CCl4-intoxicated rats. In conclusion, the ethanol extract of F. ingens showed protective activity against liver injury, which might be developed into a new hepatoprotective agent.  相似文献   

6.
Human toxic responses are very often related to metabolism. Liver metabolism is traditionally studied, but other organs also convert chemicals and drugs to reactive metabolites leading to toxicity. When DNA damage is found, the effects are termed genotoxic. Here we describe a comprehensive new approach to evaluate chemical genotoxicity pathways from metabolites formed in situ by a broad spectrum of liver, lung, kidney and intestinal enzymes. DNA damage rates are measured with a microfluidic array featuring a 64-nanowell chip to facilitate fabrication of films of DNA, electrochemiluminescent (ECL) detection polymer [Ru(bpy)2(PVP)10]2+ {(PVP = poly(4-vinylpyridine))} and metabolic enzymes. First, multiple enzyme reactions are run on test compounds using the array, then ECL light related to the resulting DNA damage is measured. A companion method next facilitates reaction of target compounds with DNA/enzyme-coated magnetic beads in 96 well plates, after which DNA is hydrolyzed and nucleobase-metabolite adducts are detected by LC-MS/MS. The same organ enzymes are used as in the arrays. Outcomes revealed nucleobase adducts from DNA damage, enzymes responsible for reactive metabolites (e.g. cyt P450s), influence of bioconjugation, relative dynamics of enzymes suites from different organs, and pathways of possible genotoxic chemistry. Correlations between DNA damage rates from the cell-free array and organ-specific cell-based DNA damage were found. Results illustrate the power of the combined DNA/enzyme microarray/LC-MS/MS approach to efficiently explore a broad spectrum of organ-specific metabolic genotoxic pathways for drugs and environmental chemicals.  相似文献   

7.
[AAE]X composed of amino acid ester cations is a sort of typically “bio-based” protic ionic liquids (PILs). They possess potential Brønsted acidity due to the active hydrogens on their cations. The Brønsted acidity of [AAE]X PILs in green solvents (water and ethanol) at room temperature was systematically studied. Various frameworks of amino acid ester cations and four anions were investigated in this work from the viewpoint of structure–property relationship. Four different ways were used to study the acidity. Acid dissociation constants (pKa) of [AAE]X determined by the OIM (overlapping indicator method) were from 7.10 to 7.73 in water and from 8.54 to 9.05 in ethanol. The pKa values determined by the PTM (potential titration method) were from 7.12 to 7.82 in water. Their Hammett acidity function (H0) values (0.05 mol·L−1) were about 4.6 in water. In addition, the pKa values obtained by the DFT (proton-transfer reactions) were from 7.11 to 7.83 in water and from 8.54 to 9.34 in ethanol, respectively. The data revealed that the cationic structures of [AAE]X had little effect and the anions had no effect on the acidity of [AAE]X. At the same time, the OIM, PTM, Hammett method and DFT method were reliable for determining the acidic strength of [AAE]X in this study.  相似文献   

8.
This study was aimed at evaluating the antioxidant and hepatoprotective effects of the ethanol extract of Vitex glabrata (EEVG) in a CCl(4)-induced liver damage model in rats; and to isolate and characterise the bioactive constituent from EEVG. Hepatoprotective activity was evaluated by changes in the levels of the serum enzymes viz. AST, ALT, ALP and total bilirubin, and further by histopathological examinations of liver tissues. Antioxidant activity was measured in terms of superoxide dismutase, GSH, lipid peroxidation (LPO), catalase and peroxidase levels in liver homogenate. The pentamethoxy flavonoid artemetin was isolated and characterised from EEVG. Artemetin and EEVG pre-treatment significantly (p?相似文献   

9.
The catalytic activity of Pt nanoparticles (PtNPs) with different sizes and shapes was investigated in a photocatalytic hydrogen‐evolution system composed of the 9‐mesityl‐10‐methylacridinium ion (Acr+–Mes: photocatalyst) and dihydronicotinamide adenine dinucleotide (NADH: electron donor), based on rates of hydrogen evolution and electron transfer from one‐electron‐reduced species of Acr+–Mes (Acr.–Mes) to PtNPs. Cubic PtNPs with a diameter of (6.3±0.6) nm exhibited the maximum catalytic activity. The observed hydrogen‐evolution rate was virtually the same as the rate of electron transfer from Acr.–Mes to PtNPs. The rate constant of electron transfer (ket) increased linearly with increasing proton concentration. When H+ was replaced by D+, the inverse kinetic isotope effect was observed for the electron‐transfer rate constant (ket(H)/ket(D)=0.47). The linear dependence of ket on proton concentration together with the observed inverse kinetic isotope effect suggests that proton‐coupled electron transfer from Acr.–Mes to PtNPs to form the Pt? H bond is the rate‐determining step for catalytic hydrogen evolution. When FeNPs were used instead of PtNPs, hydrogen evolution was also observed, although the hydrogen‐evolution efficiency was significantly lower than that of PtNPs because of the much slower electron transfer from Acr.–Mes to FeNPs.  相似文献   

10.
Jing Sui  Wei Li 《Soft Materials》2018,16(3):201-208
Pt nanoparticles (PtNPs)/polypyrole (PPy) composites were successfully prepared through a facile one-pot interfacial polymerization of pyrrole by using H2PtCl6 as the oxidant for the first time. The as-prepared PPy was granular particles with particle size within a few hundred nanometers, on which PtNPs (1.7–3.5) nm were homogeneously dispersed. The PtNPs/PPy composites displayed excellent electrocatalytic activity toward redox of H2O2. The non-enzyme sensor constructed with PtNPs/PPy composites displayed good sensing ability toward H2O2 at ?0.1 V with a significantly high sensitivity of 6056 μAmM?1cm?2 and a low detection limit of 1.8 μM (S/N = 3).  相似文献   

11.
A new glucose biosensor, based on the modification of highly ordered Au nanowire arrays (ANs) with Pt nanoparticles (PtNPs) and subsequent surface adsorption of glucose oxidase (GOx), is described. Morphologies of ANs and ANs/PtNPs were observed by scanning electron microscope. The electrochemical properties of ANs, ANs/GOx, ANs/PtNPs, and ANs/PtNPs/GOx electrodes were compared by cyclic voltammetry. Results obtained from comparison of the cyclic voltammograms show that PtNPs modification enhances electrochemical catalytic activity of ANs to H2O2. Hence, ANs/PtNPs/GOx biosensor exhibits much better sensing to glucose than ANs/GOx. Optimum deposition time of ANs/PtNPs/GOx biosensor for both amperometric and potentiometric detection of glucose was achieved to be 150 s at deposition current of 1?×?10?6 A. A sensitivity of 0.365 μA/mM with a linear range from 0.1 to 7 mM was achieved for amperometric detection; while for potentiometric detection the sensitivity is 33.4 mV/decade with a linear range from 0.1 to 7 mM.  相似文献   

12.
In the current study, the hepatoprotective activity of vanillic acid, silymarin, and vanillic acid-loaded silver nanoparticles (AgNPs) against CCl4-induced hepatotoxicity was tested in male rats for four weeks. Thirty male rats were divided into five groups (n = 6). The 1st group was a negative control, the 2nd group was a positive control, the 3rd group was treated with 100 mg/kg b.w. of vanillic acid, the 4th group was treated with 100 mg/kg b.w. of vanillic acid–AgNPs, and the 5th group was treated with 50 mg/kg b.w. of silymarin. The CCl4-induced hepatic toxicity in the 2nd group was revealed by the liver function and all other biochemical tests. Liver enzymes, bilirubin, lipid peroxidation, lactate dehydrogenase, and interleukin-6 were elevated, whereas, total protein, antioxidant enzymes, and irisin were decreased compared to the negative control. The hepatic tissues were also injured as a result of the CCl4-induced hepatotoxicity. Treating the hepatotoxic rats with vanillic acid moderately protected the rats of the 3rd group, whereas treatment with vanillic AgNPs and silymarin in G4 and G5, respectively, greatly protected the rats against the CCl4 hepatotoxicity, approaching the normal biochemical levels and liver tissue appearance. The biochemical tests were confirmed by the histological investigations of liver tissue.  相似文献   

13.
Peptide‐stabilized platinum nanoparticles (PtNPs) were developed that have significantly greater toxicity against hepatic cancer cells (HepG2) than against other cancer cells and non‐cancerous liver cells. The peptide H‐Lys‐Pro‐Gly‐d Lys‐NH2 was identified by a combinatorial screening and further optimized to enable the formation of water‐soluble, monodisperse PtNPs with average diameters of 2.5 nm that are stable for years. In comparison to cisplatin, the peptide‐coated PtNPs are not only more toxic against hepatic cancer cells but have a significantly higher tumor cell selectivity. Cell viability and uptake studies revealed that high cellular uptake and an oxidative environment are key for the selective cytotoxicity of the peptide‐coated PtNPs.  相似文献   

14.
Platinum nanoparticles (PtNPs) are synthesized by methylviologen-mediated reduction of PtCl2 at the potentials of the MV2+/MV?+ redox couple in 40% aqueous DMF solution. In the absence of stabilizing agents and in the presence of a stabilizer in the form of spherical silica NPs or alkylamine-modified silica NPs (SiO2-NHR), a part of PtNPs (14–18%) are deposited on the electrode while the rest of particles remain in solution to form coarse aggregates which precipitate. In the latter case, PtNPs are also partly bound to form individual ultrafine NPs (3 ± 2 nm) on the SiO2-NHR surface. In the presence of polyvinylpyrrolidone (PVP), the generated PtNPs (18 ± 9 nm) neither aggregate nor deposit on the cathode but are completely stabilized in solution being encapsulated within the PVP matrix. The obtained PtNPs are characterized by the methods of dynamic light-scattering and electron microscopy.  相似文献   

15.
《Tetrahedron: Asymmetry》2000,11(1):113-124
N-Butyl-deoxynojirimycin (NB-DNJ) has been approved for clinical trials as a potential therapy for Gaucher disease, a glycolipid lysosomal storage disorder. As this compound has both glycoprotein processing α-glucosidase and ceramide glucosyltransferase inhibitory activity, we have sought to determine the molecular basis for these two activities. NB-DNJ is known to resemble the positively charged oxocarbonium-like transition state for α-glucosidase I and the structure–function relationships we present now help to define the recognition epitope for the enzyme. Inhibition of ceramide glucosyltransferase by NB-DNJ was competitive for ceramide (Ki=7.4 μM) and non-competitive for UDP-glucose, indicating inhibitory activity is by ceramide mimicry. The presence of an N-alkyl chain was obligatory for transferase inhibition and increases in alkyl chain length provided a modest increase in inhibitory potency.By contrast, α-glucosidase inhibition was independent of the N-alkyl chain and changes in chain length. The effects of ring substitutions identified the C3 hydroxyl group as being critical for both enzymes but C1 and C6 modifications led to a loss of transferase inhibition only. Attempts to rationalise these data for transferase inhibition using an energy minimised molecular model of NB-DNJ and ceramide predicted structural homology of three stereogenic centres and the N-alkyl chain of NB-DNJ, with the trans-alkenyl and N-acyl chain of ceramide. On the basis of these studies, modifications to imino sugar inhibitors can be suggested that allow a more selective approach for molecular inhibition of both ceramide glucosyltransferase and α-glucosidase I, leading to improved compounds for the potential treatment of lysosomal glycosphingolipid storage disorders and viral infections, respectively.  相似文献   

16.

A facile green synthesis of platinum nanoparticles (PtNPs) using chlorogenic acid (CGA) as a reducing agent and stabilizing agent has been reported here for the first time to the knowledge of the authors. Well-dispersed PtNPs are synthesized in spherical shapes and are tuned in size by simply changing the molar ratio of H2PtCl6 to CGA, with the same salt, temperature and solvent. The average sizes of the particles were 16.9 ± 4.7, 13.3 ± 4.0, 10.8 ± 3.4, and 7.5 ± 2.3 nm, respectively, corresponding to molar ratios of the initial H2PtCl6/CGA of 1:1, 1:2, 1:3 and 1:4 and decreased with an increase in CGA concentration. Transmission electron microscope; energy-dispersive spectrometer; UV–visible absorption spectra (UV–Vis); and Fourier transmission infrared spectra were used to characterize the PtNPs. Additionally, the advantage of CGA for possible synergistic biological activity was studied through the in vitro antioxidant activity of PtNPs by CGA for capture of free radicals. Our results indicate that CGA is an excellent reducing and stabilizing agent in green synthesis of PtNPs, and these size-tunable PtNPs can provide potential applications in the field of biomedicines.

Graphic abstract
  相似文献   

17.
The present study explored both spontaneous and stress-induced deamidation in acid trehalase and endo-xylanase. An alteration in optimum pH by 1.5 units and optimum temperature by 20 °C accelerated the process of deamidation with a rise in isoaspartate formation and ammonia loss. Spontaneous deamidation during an enzyme-substrate reaction at physiological conditions resulted in accretion of isoaspartyl residues within the enzymes which gradually impaired their catalytic efficacy. Deamidation appeared to be more pronounced in endo-xylanase owing to its secondary structure conformation and high asparagine content. The active sites, Ala 549 in acid trehalase and His184 and Trp188 in endo-xylanase contributed to the loss of enzyme activity as they were flanking the deamidation-susceptible Asn residues. Protein l-isoaspartyl methyl transferase seemed to have a repairing capability, which enabled the heat-damaged enzymes to regain their partial activity as evident from there rise in K cat/K m. Endo-xylanase could regain 38.1 % of its biological activity while a lesser 17.5 % reactivation was obtained in acid trehalase. A unique protein l-isoaspartyl methyl transferase recognition site, Asn 151 was also identified in acid trehalase. A mass increment of the tryptic peptides of repaired enzyme due to methylation catalyzed by protein l-isoaspartyl methyl transferase substantiated the repair hypothesis.  相似文献   

18.
The objective of the present study was to investigate the proximate composition, antiradical properties and hepatoprotective activity of three species of shellfish, Corbicula japonica, Spisula sachalinensis, and Anadara broughtonii, from the coastal areas of Far East Russia. Biologically active peptides such as taurine (3.74 g/100 g protein) and ornithine (2.12 g/100 g protein) have been found in the tissues of A. broughtonii. C. japonica contains a high amount of ornithine (5.57 g/100 g protein) and taurine (0.85 g/100 g protein). The maximum DPPH and ABTS radical scavenging activity (36.0 µg ascorbic acid/g protein and 0.68 µmol/Trolox equiv/g protein, respectively) was determined for the tissue of C. japonica. The protein and peptide molecular weight distribution of the shellfish tissue water extracts was investigated using HPLC. It was found that the amount of low molecular weight proteins and peptides were significantly and positively correlated with radical scavenging activity (Pearson’s correlation coefficient = 0.96), while the amount of high molecular weight proteins negatively correlated with radical scavenging activity (Pearson’s correlation coefficient = −0.86). Hepatoprotective activity, measured by the survival rate of HepG2 hepatocytes after cotreatment with t-BHP, was detected for C. japonica. The highest protection (95.3 ± 2.4%) was achieved by the cold water extract of C. japonica at the concentration of 200 mg/mL. Moreover, oral administration of hot water extract of C. japonica to rats before the treatment with CCl4 exhibited a markedly protective effect by lowering serum levels of ALT and AST, inhibiting the changes in biochemical parameters of functional state of rat liver, including MDA, SOD, GSH and GST.  相似文献   

19.
Herein, green platinum nanoparticles (PtNPs) were synthesized using an aqueous extract of Atriplex halimus leaves as a reductant. Atriplex platinum nanoparticles (At-PtNPs) were stable for up to three months. At-PtNPs were characterized by several techniques including UV–Visible spectroscopy, Fourier Transform Infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), Energy Dispersive X-ray spectroscopy (EDX), EDX elemental mapping, High-resolution Transmission electron microscope (HRTEM), Selected Area Electron Diffraction (SAED), and X-ray Photoelectron Spectroscopy (XPS) and Zeta measurements. At-PtNPs were black-colored and mainly spherical with a plasmon peak at 295 nm with ultra-small particle size (1–3 nm) and high surface charge (?25.4 mV). At-PtNPs were verified as a superb catalyst as they were able to catalytically degrade MB dye. At-PtNPs exhibited a high antibacterial efficiency against gram-negative bacteria. At-PtNPs were proved as a highly efficient antioxidant agent. Thus, the attained results offer a promising route of the green synthesis of PtNPs using the aqueous extract of Atriplex halimus.  相似文献   

20.
Local tribes use the leaves of Ficus lepicarpa B. (Moraceae), a traditional Malaysian medicine, as a vegetable dish, a tonic, and to treat ailments including fever, jaundice and ringworm. The purpose of this study was to look into the possible therapeutic effects of F. lepicarpa leaf extract against carbon tetrachloride (CCl4)-induced liver damage in rats. The DPPH test was used to measure the antioxidant activity of plants. Gas chromatography-mass spectrometry was used for the phytochemical analysis (GCMS). Six groups of male Sprague-Dawley rats were subjected to the following treatment regimens: control group, CCl4 alone, F. lepicarpa 400 mg/kg alone, CCl4 + F. lepicarpa 100 mg/kg, CCl4 + F. lepicarpa 200 mg/kg and CCl4 + F. lepicarpa 400 mg/kg. The rats were euthanized after two weeks, and biomarkers of liver function and antioxidant enzyme status were assessed. To assess the extent of liver damage and fibrosis, histopathological and immunohistochemical examinations of liver tissue were undertaken. The total phenolic content and the total flavonoid content in methanol extract of F. lepicarpa leaves were 58.86 ± 0.04 mg GAE/g and 44.31 ± 0.10 mg CAE/g, respectively. F. lepicarpa’s inhibitory concentration (IC50) for free radical scavenging activity was reported to be 3.73 mg/mL. In a dose-related manner, F. lepicarpa was effective in preventing an increase in serum ALT, serum AST and liver MDA. Histopathological alterations revealed that F. lepicarpa protects against the oxidative stress caused by CCl4. The immunohistochemistry results showed that proinflammatory cytokines (tumour necrosis factor-α, interleukin-6, prostaglandin E2) were suppressed. The antioxidative, anti-inflammatory, and free-radical scavenging activities of F. lepicarpa can be related to its hepatoprotective benefits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号