首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Veratrum nigrum L. (VN) is a well-known herbal medicine and rich in chemical components with multiple pharmacological activities including antihypertensive, anticancer, and antifungal effects. In the current experiment, the quality of VN from different habitats was evaluated based on combinative method of fingerprint, multi-component quantification and chemical pattern recognition. Fifteen batches of VN were collected, and intrinsic chemical composition were identified using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry, which is a method for analyzing the similarity between samples, coupled with fingerprint of traditional Chinese medicine. The fingerprint similarity model show that 22 common peaks were selected covering 15 batches of and the similarity > 0.963. The total of 22 joint components were tentatively identified by comparison with standard substances or literature. A ultra-high performance liquid chromatography coupled with triple quadrupole mass spectrometry method for simultaneous determination of 8 compounds was established to evaluate the contents of raw and processed Veratrum nigrum L. Multivariate analysis was then applied to compare different batches of herbs based on ultra-high performance liquid chromatography coupled with triple quadrupole mass spectrometry data. All raw and processed samples were classified by partial least squares discriminant analysis based on the 8 analyzed compounds. The findings suggested that veratramine and polydatin with a variable importance for the project (VIP) > 1 were identified as significant constituents, the presence of which can be used to differentiate between raw and processed Veratrum nigrum L. samples. These results indicate that processing methods show important effects on the composition of Veratrum nigrum L..  相似文献   

2.
Organic foods gaining popularity due its connection with the health, high nutritional value, and high quality. Therefore, it is of prime importance to develop the analytical methods to combat with food authentication and protect consumer from the food fraud. Conventional soy sauce (CS) and organic soy sauce (OS) were characterized and differentiate for the first time using 1H NMR-based metabolomics approach. Classification methods like orthogonal partial least squares of discriminant analysis (OPLS-DA) showed a significant (p < 0.01) separation among CS and OS yielding important metabolites contributing towards this separation. OS was characterized by increased levels of leucine, threonine, isoleucine, valine, choline, phenylalanine, tyrosine, lactate, and acetate whereas, CS showed elevated concentrations of glutamate, glucose, and sucrose. The abundance ratio of 13C to 12C was determined by 1H NMR spectroscopy which showed an increased ratio of 13C isotope in OS samples indicating the organically grown wheat and soybean used for the preparation of OS. The results can be helpful to convey the information to the end-user to prevent them from economically motivated adulteration. This information could also pave the way to further trace and authenticate the raw materials used in the production of soy.  相似文献   

3.
Meat is a rich source of energy that provides high-value animal protein, fats, vitamins, minerals and trace amounts of carbohydrates. Globally, different types of meats are consumed to fulfill nutritional requirements. However, the increasing burden on the livestock industry has triggered the mixing of high-price meat species with low-quality/-price meat. This work aimed to differentiate different meat samples on the basis of metabolites. The metabolic difference between various meat samples was investigated through Nuclear Magnetic Resonance spectroscopy coupled with multivariate data analysis approaches like principal component analysis (PCA) and orthogonal partial least square-discriminant analysis (OPLS-DA). In total, 37 metabolites were identified in the gluteal muscle tissues of cow, goat, donkey and chicken using 1H-NMR spectroscopy. PCA was found unable to completely differentiate between meat types, whereas OPLS-DA showed an apparent separation and successfully differentiated samples from all four types of meat. Lactate, creatine, choline, acetate, leucine, isoleucine, valine, formate, carnitine, glutamate, 3-hydroxybutyrate and α-mannose were found as the major discriminating metabolites between white (chicken) and red meat (chevon, beef and donkey). However, inosine, lactate, uracil, carnosine, format, pyruvate, carnitine, creatine and acetate were found responsible for differentiating chevon, beef and donkey meat. The relative quantification of differentiating metabolites was performed using one-way ANOVA and Tukey test. Our results showed that NMR-based metabolomics is a powerful tool for the identification of novel signatures (potential biomarkers) to characterize meats from different sources and could potentially be used for quality control purposes in order to differentiate different meat types.  相似文献   

4.
A series of enantiopure and racemic p-alkylphenyl glycerol ethers 1ak were synthesized. A new, sensitive, and pictorial method of comparison of the IR spectra of solid enantiopure and racemic samples was developed to obtain preliminary information on the crystallization types of these compounds. In order to detect the subtle differences in the organization of the chiral solid phase, a new easily implemented approach, based on a chromatographic measuring of the relative abundance of the enantiomers in a single solution in equilibrium with a solid sample of arbitrary (0 < ee < 1) composition, is reported. One new conglomerate compound (Alk = n-Pr) and one borderline case (Alk = n-Bu) are disclosed. Higher members of the series of 1 (starting with an n-Bu derivative) are turned into liquid crystals upon melting; no significant differences between racemic and non-racemic samples were found. Only enantiopure methyl-, n-butyl, n-pentyl, n-hexyl, and n-heptyl substituted 1 were able to form supramolecular gels in hydrocarbon solvents; all racemic ethers 1 did not show such ability.  相似文献   

5.
Here, we discuss the synthesis of thiosemicarbazide derivatives based on benzoxazole. These compounds were obtained via sequence of reactions. The targeted products were confirmed using a number of spectroscopic methods, including NMR (1H and 13C) and EI-MS. After spectral confirmation all the synthesized compounds were evaluated for urease and β-Glucuronidase inhibitory activity in order to explore their biological significances in the presence of standard drug thiourea (IC50 = 21.86 ± 0.40) and D-saccharic acid 1,4-lactone (IC50 value 22.00 ± 1.10 µM) respectively. Among the evaluated series, compounds 14 and 15 (1.10 and 0.01 and 2.20 and 0.60) were shown to have slightly greater potential than standard drugs. Anti-nematodal activity was also employed to explore the cytotoxic nature of synthesized analogs. In order to establish the binding relationship with enzyme active sites, molecular docking experiments were done and directions for compound modification based on SAR features were addressed. In addition, ADMET prediction study also investigated to found drug like properties of the potential analogs.  相似文献   

6.
In the thermoluminescence (TL) detection method for irradiated foods, accurate standards have been developed for detecting irradiated foods. The standard method describes that emission maximum temperature (T1i) and TL ratio for non-heated or non-mixed sample can be in the range of 150–250 °C and more than 0.1, respectively, when it was irradiated food. But when irradiated food is heated up to 200 °C, or mixed up with non-irradiated stuffs, T1i and TL ratio would not drop in the range. Here we examined the effects of the two processes, heating and mixing with non-irradiated food, on T1i and G1/G1k ratio (ratio of G1 and average G1 for 1-kGy-irradiated JF2, this value is modeled after TL ratio) using a model consisting of irradiated and non-irradiated geochemical standards of feldspar (JF1, JF2, PF, etc.). T1i temperatures for irradiated JF1, JF2, and PF ranged from 163 to 175 °C, while those for the non-irradiated JF2 ranged from 253 to 263 °C. T1i temperatures for 5-kGy-irradiated and preheated JF2 for 10 s, 20 s, and 30 s at 180 °C were 215, 225, and 231 °C, respectively.When JF2 was irradiated from 100 Gy to 5 kGy, the T1i was almost constant at any doses. G1/G1k ratios at 100, 200, and 500 Gy were 0.15, 0.23, and 0.60, respectively. G1/G1k ratio was proportional to the given dose at the integration temperature ranges.The TS sample, which originated from farm soil in Tanegashima Island, gave the same results as JF2. T1is for 5-kGy-irradiated and preheated JF2 for 20 s at 150, 180, and 200 °C were 197, 225, and 246 °C, respectively. Longer and higher preheating resulted in higher T1i. Longer and higher preheating extremely reduced the G1/G1k ratio, and in some cases the ratio was less than 0.1. This means TL ratio is useless in determination of the standard for irradiated food.Peak temperatures for JF2 in mixture of 5-kGy-irradiated to non-irradiated (1.25–5%) were 261–263 °C (non-irradiated portion, T1n) and 177–180 °C (irradiated portion T1i). The peak positions are almost the same as those of original components and would not be affected by the mixing ratio. But TL ratio could not be used to determine irradiated food because mixing would reduce it remarkably.Some of the glow curves were simulated by a computer program.In conclusion, T1i/n is a key factor in an irradiated food determination practice for sample containing feldspar, rather than TL ratio.  相似文献   

7.
A series of chalcone analogues (1–15) were synthesized by Claisen-Schmidt condensation in good yields (70–95%) and characterized by FT-IR, 1H NMR and mass spectral methods. Additionally, compounds 3 and 7 were characterized by 13C NMR. Antitubercular and antioxidant activities of the chalcones were evaluated by MABA and DPPH free radical assays. In MABA assay analogues 3 (MIC = 14 ± 0.11 µM) and 11 (MIC = 14 ± 0.17 µM) bearing fluorine and methoxy groups at para and meta positions were 1.8-times more active than the standard pyrazinamide (MIC = 25.34 ± 0.22 µM). The chalcone analogues such as compound 7 (IC50 = 4 ± 1 µg/mL) containing electron releasing groups such as OH at ortho position had slightly more antioxidant activity than Gallic acid (IC50 = 5 ± 1 µg/mL). The potential compounds 3, 7, 9 and 11 were less selective and toxic against human live cell lines-LO2. Further, molecular docking results of chalcones against anti-tubercular drug target isocitrate lyase (PDB ID: 1F8M) revealed that compound 3 and 11 shown least binding energies as ?7.6, and ?7.5 kcal/mol are in line with in vitro MABA assay, suggesting that these compounds 3 and 11 are strong inhibitor of isocitrate lyase. SwissADME programme estimated the drug likeliness properties of compounds 3, 7, 9 and 11. The lead molecules arisen through this study helps to develop new antitubercular and antioxidant agents.  相似文献   

8.
The present study aimed to investigate the bioactive compounds in artichoke (Cynara scolymus) powder, having antioxidant and antimicrobial activity, and to determine the effectiveness of artichoke (C. scolymus) powder extract within the minced meat. C. scolymus was extracted using two different methods. The method incorporating high phenolic and flavonoid content levels was used in other analyses and the phenolic and flavonoid contents in C. scolymus extract was determined using LC-QTOF-MS. Antioxidant, antimicrobial, and metmyoglobin (metMb) reducing activities and pH values of the extract-added minced meat samples were measured for 10 days during storage. DPPH, FRAP, and ABTS were used in the antioxidant analyses. The antimicrobial activity of C. scolymus extract was evaluated on five different food pathogens by using the disc diffusion method. The most resistant bacterium was found to be Listeria monocytogenes (18.05 mm ± 0.24). The amount of metMb was measured in the minced meat sample that was added to the extract during storage (p < 0.05). MetMb formation and pH value on the sixth day of storage were found to be at lower levels than in the control group. In conclusion, C. scolymus exhibited a good antimicrobial and antioxidant effect and can be used in storing and packaging the food products, especially the meat and meat products.  相似文献   

9.
Bioassay based fractionation of methanolic extract of Berberis baluchistanica (Berberidaceae), used traditionally for internal injuries, led to the isolation of known compounds (14). The structure of these compounds was elucidated by different spectroscopic analysis and available literature data. Antidiabetic and antioxidant potentials of B. baluchistanica fractions and isolated compounds were evaluated using in vitro alpha- amylase and DPPH assays. The isolated compounds were identified as obamegine (1), pakistanine (2), 8-oxyberberine (3) and baluchistine (4). Obamegine was reported from many other species of this genus but it is first time isolated from B. baluchistanica in present study. Moreover, in vitro pakistanine (2) was found as bioactive lead molecule for hypoglycemic (IC50:40.26 µg/ml) and antioxidant (IC50:14.15 µg/ml) activities compared to acarbose (IC50:33.68 µg/ml) and ascorbic acid (IC50:0.41 µg/ml). To the best of our knowledge, no previous data were available for these biological activities. Additionally, in silico antidiabetic and antioxidant activity of pakistanine against two proteins, α-amylase (-9.7 kcal/mol) and tyrosinase (-8.7 kcal/mol) are reported here for the first time. The molecular docking binding interactions authenticate and support the above-mentioned activities and are helpful in predicting the mechanism of action of pakistanine (2).  相似文献   

10.
Precise identification and differentiation among those congeneric Traditional Chinese Medicines (TCMs) or derived from the same plant trend to be more challenging, particularly in the absence of appearance characteristics. Three TCMs, involving Gleditsiae Sinensis Fructus (GSF), Gleditsiae Fructus Abnormalis (GFA), and Gleditsiae Spina (GS), recorded in Chinese Pharmacopoeia (2020 edition) are derived from Gleditsia sinensis, but prescribed for different clinical uses. The documents aimed to compare their chemical differences are rare, to date. An untargeted metabolomics approach, based on ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC/QTOF-MS), was elaborated to unveil the potential chemical markers to differentiate among GSF, GFA, and GS. Good chromatographic separation of all the GSF/GFA/GS components was achieved within 33 min by utilizing a BEH C18 column, while data-independent MSE in the positive mode was selected for profiling the metabolic features. Notably, the high-mass saponins (1300–2500 Da) gave unique protonated precursors ([M + H]+) in the positive ESI mode, compared with those complicated ion species occurring in the negative mode. Pattern recognition chemometrics analysis of 45 batches of G. sinensis samples could unveil 70 significantly altered ions assigned as 46 potentially differential components. The positive/negative high-accuracy MS2 data analysis, phytochemical isolation/NMR analysis, and searching of an in-house library of G. sinensis, were utilized for structural elucidation. Three compounds (saikachinoside A, locustoside A, and locustoside B) rich in GSF could be the markers to differentiate from GFA/GS, while four components were characteristic for GS. These results obtained can greatly benefit the quality control of TCMs derived from G. sinensis.  相似文献   

11.
Two new nickel(II) [Ni(L)2] and copper(II) [Cu(L)2] complexes have been synthesized with bidentate NO donor Schiff base ligand (2-{(Z)-[furan-2-ylmethyl]imino]methyl}-6-methoxyphenol) (HL) and both complexes Ni(L)2 and Cu(L)2 have been characterized by elemental analyses, IR, UV–vis, 1H, 13C NMR, mass spectroscopy and room temperature magnetic susceptibility measurement. The tautomeric equilibria (phenol-imine, O–H?N and keto-amine, O?H–N forms) have been systemetically studied by using UV–vis absorption spectra for the ligand HL. The UV–vis spectra of this ligand HL were recorded and commented in polar, non-polar, acidic and basic media. The crystal structures of these complexes have also been determined by using X-ray crystallographic techniques. The complexes Ni(L)2 and Cu(L)2 crystallize in the monoclinic space group P21/n and P21/c with unit cell parameters: a = 10.4552(3) Å and 12.1667(4) Å, b = 8.0121(3) Å and 10.4792(3) Å, c = 13.9625(4) Å and 129.6616(3)Å, V = 1155.22(6) Å3 and 1155.22(6) Å3, Dx = 1.493 and 1.476 g cm?3 and Z = 2 and 2, respectively. The crystal structures were solved by direct methods and refined by full-matrix least squares to a find R = 0.0377 and 0.0336 of for 2340 and 2402 observed reflections, respectively.  相似文献   

12.
In this study a novel polymer composite electrolytes (PCEs) based on poly (vinyl alcohol) (PVA): Ce(III)-complex:NH4SCN plasticized with glycerol are prepared by solution cast technique. XRD and FTIR routes are used to study the film structure. The crystalline and amorphous areas are determined through the deconvolution of XRD spectra and their values were used to calculate the degree of crystallinity. The deconvolutions of the FTIR of asymmetric C≡N stretching mode are carried out to establish the bands coupled with free ions, contact ion pairs and ion aggregates. The maximum ambient temperature DC conductivity of 2.07 × 10−3 S cm−1 is recorded for the sample with the lowest degree of crystallinity. It was found that the number density (n), mobility (μ) and diffusion coefficient (D) of ions are increased with the glycerol concentration. Field emission scanning electron microscopy (FESEM) is used to examine the effect of plasticizer on film morphology. The DC conductivity trend is interpreted in detail with the help of dielectric properties. It is found that the transference numbers of ions (tion) and electrons (tel) are 0.965 and 0.035, respectively. It is shown by the linear sweep voltammetry (LSV) that the potential window of the PCE is 2.1 V. A shape, which is nearly rectangular at lower scan rates, is identified from cyclic voltammetry (CV). Specific capacitance and energy density are exhibited by EDLC with average of 161.5 F/g and 18.17 Wh/kg, respectively within 400 cycles. The initial power density is shown by EDLC to be 2.825 × 103 W/kg.  相似文献   

13.
In this study we analyzed the exudate of beef to evaluate its potential as non invasive sampling for nuclear magnetic resonance (NMR) based metabolomic analysis of meat samples. Exudate, as the natural juice from raw meat, is an easy to obtain matrix that it is usually collected in small amounts in commercial meat packages. Although meat exudate could provide complete and homogeneous metabolic information about the whole meat piece, this sample has been poorly studied. Exudates from 48 beef samples of different breeds, cattle and storage times have been studied by 1H NMR spectroscopy. The liquid exudate spectra were compared with those obtained by High Resolution Magic Angle Spinning (HRMAS) of the original meat pieces. The close correlation found between both spectra (>95% of coincident peaks in both registers; Spearman correlation coefficient = 0.945) lead us to propose the exudate as an excellent alternative analytical matrix with a view to apply meat metabolomics. 60 metabolites could be identified through the analysis of mono and bidimensional exudate spectra, 23 of them for the first time in NMR meat studies. The application of chemometric tools to analyze exudate dataset has revealed significant metabolite variations associated with meat aging. Hence, NMR based metabolomics have made it possible both to classify meat samples according to their storage time through Principal Component Analysis (PCA), and to predict that storage time through Partial Least Squares (PLS) regression.  相似文献   

14.
The present article deals with the synthesis of novel nano-sized fluorinated thiazoles and studying their anticancer potentiality. The targeted azoles could be accessed via trifluoro-methylated thiosemicarbazone (3) prepared by reaction of with thiosemicarbazide in acidic solution of ethanol. The latter a fluorinated building block (3) have been reacted with appropriate derivatives of a-halo compounds namely, N-aryl 2-oxopropane-hydrazonoyl chlorides 4a-f using dioxane containing TEA as base catalyst. Also, the reaction between N-(4-(1-(2-carbamothioylhydrazineylidene)ethyl)phenyl)-2,2,2-trifluoroacetamide (3) and chloroacetonitrile 8 under the same experimental conditions furnished the corresponding amino thiazole derivative 11. In the same manner the base catalyzed cyclocondensation reaction between N-(4-(1-(2-carbamothioylhydrazineylidene)ethyl)phenyl)-2,2,2-trifluoroacetamide (3) and phenacyl bromide derivatives 12a-d afforded the corresponding thiazoles 13a-d in good yield. The structure of all synthesized thiazole derivatives as well as their mechanistic pathways were studied based on spectral data analysis and physical characteristics. The nanosized products were confirmed by using XRD analysis. Moreover, twelve samples were submitted for evaluation of their cytotoxicity activities against MDA-MB-231 (breast cancer cell) using colorimetric MTT assay, in comparison with Cisplatin standard drug. Two nano-sized thiosemicarbazone derivative 3 and the thiazole derivative 7c showed potent activity with IC50 = 7.7 and 2.97 µg/ml, respectively in compared with the IC50 = 4.33 µg/ml of cisplatin. The nanosized thiazole derivative 7c was more potent than cisplatin. Also, two thiazole derivatives 13b and 7b showed good activity with IC50 = 13.4 and 14.9 µg/ml. In addition, the molecular docking studies have been achieved using 4hy0, (X-chromosome-linked- inhibitor of apoptosis protein; (XIAP)).  相似文献   

15.
New stable isotope dilution assays were developed for the simultaneous quantitation of [13C5]-labelled and unlabelled 5-methyltetrahydrofolic acid, 5-formyltetrahydrofolic acid, folic acid along with unlabelled tetrahydrofolic acid and 10-formylfolic acid in clinical samples deriving from human bioavailability studies, i.e. plasma, ileostomy samples, and food. The methods were based on clean-up by strong anion exchange followed by LC-MS/MS detection. Deuterated analogues of the folates were applied as the internal standards in the stable isotope dilution assays. Assay sensitivity was sufficient to detect all relevant folates in the respective samples as their limits of detection were below 0.62 nmol/L in plasma and below 0.73 μg/100 g in food or ileostomy samples. Quantification of the [13C5]-label in clinical samples offers the possibility to differentiate between folate from endogenous body pools and the administered dose when executing bioavailability trials.  相似文献   

16.
The ATP-binding cassette is the major class of transporters responsible for the efflux of chemotherapeutic agents from cancer cells, resulting in treatment failures of cancer’s patients. Suaeda vermiculata Forssk. ex. J. F. Gmel. is traditionally known for its liver protective activity. The LC-MS based chemical profilings of the sequentially partitioned sub-extracts obtained from the alcoholic extract of S. vermiculata using n-hexane, chloroform, ethyl acetate, and n-butanol as fractionating solvents, identified a total of thirty six compounds. These sub-extracts were evaluated for their anti-hepatocarcinoma activity against the sensitive HepG2 and doxorubicin (DOX)-resistant, HepG-2/ADR cell lines. A mixture of doxorubicin and sub-extracts at 20 μg/ml doses were also tested for their anti-hepatocarcinoma activity. The exhibited IC50 values for the chloroform, ethyl acetate, n-hexane, and n-butanol sub-extracts, and the doxorubicin against HepG2, and HepG-2/ADR cell lines were found at 64.5, 66.8, 81.25, 125, 1.3 μg/ml, and 110.1, 91.82, 138.2, 265.7, 4.77 μg/ml levels, respectively. However, the treatment of resistant cells with 20 μg/ml of different sub-extracts in combination with the doxorubicin showed significant improvements in the doxorubicin activity against the resistant cells, and the IC50 values for DOX + chloroform, DOX + ethyl acetate, DOX + n-hexane, and DOX + n-butanol against resistant cells, were at 1.77, 2.05, 2.66, and 2.71 μg/ml levels, respectively. The IC50 values exhibited 2.69x, 2.33x, 1.79x and 1.76x-folds reversal of the sensitivity in the resistant cancer cell lines. The molecular docking studies of the compounds identified in the LC-MS chemical profilings, against three ATP-binding cassette proteins i.e., ABCB1, ABCC1, and ABCG2, showed that flavonoids as the major class of compounds responsible for reversal of the resistant cells sensitivities. The predicted binding affinity for the flavonoids against the above mentioned three ATP-binding cassette proteins’ are in the ranges of ~?8 to ?11 kcal/mol. Our results clearly indicate that the presence of flavonoids, as the major class of compounds in the S. vermiculata is responsible for the chemosensitization of the resistant HCC-cell lines. Moreover, the structures, 21 (5‐O‐methyl visamminol), 22 (N-trans-feruloyl tyramine), 27 (atractylenolide-III), and 32 (ginsenoside-Rh2) were also identified among the potential ATP-binding cassette’s modulators during the current study. These observations put the S. vermiculata in perspective with the traditionally claimed liver protective efficacy of the plant.  相似文献   

17.
The complexes of [Ln(2,3,4-tmoba)3phen]2 (Ln = Dy (1), Eu (2), Tb (3); 2,3,4-tmoba = 2,3,4-trimethoxybenzoate; phen = 1,10-phenanthroline) were synthesized and characterized by a series of techniques including the elemental analysis, IR and fluorescent spectra and TG/DSC-FTIR technology. The crystal structures were determined by X-ray crystallography. Each complex include two Ln3+ ions, six 2,3,4-tmoBA and two phen molecules forming a binuclear structure, giving the coordination number of nine. The three-dimensional IR accumulation spectra of gaseous products for the complexes 1 to 3 are analyzed and the thermal decomposition processes are further authenticated. Through means of differential scanning calorimeter (DSC), two solid-solid phase transition endothermic peaks were found in the complex 2, which was different from the complexes 1 and 3. The heat capacities of these complexes were measured and fitted to a polynomial equation with the least squares method for each complex on the basis of the reduce temperature x (x = [T  (Tmax + Tmin)/2]/[(Tmax  Tmin)/2]) over the range from (256.15 to 476.15) K. Subsequently, the smoothed molar heat capacities and thermodynamic functions (HTH298.15 K), (STS298.15 K), and (GTG298.15 K) of the complexes 1 to 3 were calculated based on the fitted polynomial of the heat capacities. The fluorescent intensity of the complexes 2 and 3 are markedly improved as well.  相似文献   

18.
Verifying the authenticity of food products is essential due to the recent increase in counterfeit meat-containing food products. The existing methods of detection have a number of disadvantages. Therefore, simple, cheap, and sensitive methods for detecting various types of meat are required. In this study, we propose a rapid full-cycle technique to control the chicken or pig adulteration of meat products, including 3 min of crude DNA extraction, 20 min of recombinase polymerase amplification (RPA) at 39 °C, and 10 min of lateral flow assay (LFA) detection. The cytochrome B gene was used in the developed RPA-based test for chicken and pig identification. The selected primers provided specific RPA without DNA nuclease and an additional oligonucleotide probe. As a result, RPA–LFA, based on designed fluorescein- and biotin-labeled primers, detected up to 0.2 pg total DNA per μL, which provided up to 0.001% w/w identification of the target meat component in the composite meat. The RPA–LFA of the chicken and pig meat identification was successfully applied to processed meat products and to meat after heating. The results were confirmed by real-time PCR. Ultimately, the developed analysis is specific and enables the detection of pork and chicken impurities with high accuracy in raw and processed meat mixtures. The proposed rapid full-cycle technique could be adopted for the authentication of other meat products.  相似文献   

19.
The organic compounds with end-capped acceptors obtained much consideration in optoelectronic field owing to their promising electronic properties. Herein, a series of PTMD1-PTMD6 conjugated compounds having D-π-A architecture were designed via structural tailoring including end-capped acceptors in non-fullerene compound (PTMR). The PTMR and its designed compounds were used at M06/6-311G(d,p) level for their optimization analysis and subsequently, by using optimized geometries to perform non-linear optical (NLO), frontier molecular orbitals (FMOs) and natural bond orbitals (NBOs) analyses. The quantum chemical investigations revealed that all the designed compounds showed significant reduction in band gaps with the range of 1.467–1.880 eV in comparison to PTMR (2.308 eV). The band gaps were found as PTMR (2.308) > PTMD6 (1.880) > PTMD1 (1.752) > PTMD2 (1.693) > PTMD4 (1.532) > PTMD5 (1.514) > PTMD3 (1.467) with eV in the descending order. Further, density of states (DOS) supported the results of FMOs study, consequently, according to transition density matrix (TDMs), the designed chromophores (PTMD1-PTMD6) displayed the transmission of charge effectively. The PTMD3 showed the maximum value of λmax at 764.627 nm as compared to all the designed derivatives with greater bathochromic shift. The compound PTMD3 showed the highest values of βtot and < γ > among all the studied compounds i.e., 7.695 × 10-27 and 1.776 × 10-31 esu, respectively. According to theoretical investigation, the structural modification with different acceptor moieties played an important role in the context of desirable NLO materials for optoelectronic applications.  相似文献   

20.
《Comptes Rendus Chimie》2016,19(7):850-856
This paper describes the design by juxtaposition of anti-infectious moieties, a series of hybrid imidazopyridinyl-arylpropenone compounds. These compounds (5a–y) were synthesized by a crotonization reaction of 1-(2-methylimidazo[1,2-a]pyridin-3-yl)ethanone (3) with benzaldehyde derivatives (4). Spectral determination of structure of those compounds was performed by NMR and ESI mass spectroscopy. From the screening of antiparasitic and antimicrobial activities, the compound 5q (IC50 = 1.52 μM) was identified for possible development against a chloroquine-resistant strain of Plasmodium falciparum. The compounds 5n, 5s and 5w showed a veterinary interest due to their nematicidal activities (LC100) against Haemonchus contortus from 7.1 to 1.5 nM. Against candidiasis, three other compounds (5e, 5g, 5v) inhibited drug-resistant strains of Candida albicans (MIQ = 1.25 to 0.31 μg). This study showed that the arylpropenone functional group vectorised by imidazopyridine could be considered as a new pharmacophore with potential anti-infectious activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号