首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study is intended to adopt a facile method for preparing a sulphonated green carbon catalyst from date pits biomass. Catalyst synthesis involves in situ carbonization and sulphonation and it has been characterized by following techniques such as XRD, SEM, EDX, TEM, FTIR, TGA, and BET. Surface and internal morphology results exhibited that the synthesized sulphonated carbon material possesses a mesoporous structure, while activated carbon possesses a microporous structure. Furthermore, the Fourier transform infrared (FTIR) spectra confirmed the presence of acidic groups (OH, COOH, and SO3H) in synthesized sulphonated carbon material. Sulphonated carbon material exhibited high acidity (4.7 mmol/g) and good thermal stability. The application of this catalyst for the tertiary butylation of phenol without using any solvent has been investigated. The phenol alkylation reaction showed maximum conversion at reaction condition: temperature (140 °C) with 2 bar (nitrogen gas) pressure with maximum phenol conversion 79.27 wt%, with 68.01% selectivity towards 4TBP+2,4TBP, which is used as an intermediate in antioxidants. The catalyst exhibits comparable catalytic performance up to five reaction cycles. Thus it can be concluded that waste date pits can be successfully employed for green catalyst synthesis and used for reactions involving large molecules.  相似文献   

2.
This paper describes the concept of the utilization of metal oxide (WO3) modified multi-walled carbon nanotubes (MWCNT) for supporting and activating PtSn nanoparticles (PtSn/WO3-MWCNT and PtSn/MWCNT) for ethylene glycol oxidation. The resulting nanocomposite was developed and characterized using electrochemical and microscopic (TEM, SEM−EDS) techniques, as well as XRD analysis. The electrocatalytic currents measured under voltammetric and chronoamperometric conditions were greater than those found with the commercially available Vulcan-supported Pt3Sn nanoparticles, which were used as reference catalysts. In situ FTIR spectroscopy was used to detect the formation of oxidation intermediates or products during the ethylene glycol oxidation. Combining the transition metal oxide species with Pt-based nanoparticles can generate OH groups at low potentials. These groups participate in the oxidation of passivating CO adsorbates on the Pt surface, and can also potentially break CH bonds. Further, the effectiveness of synthesized catalyst has been assessed through testing both catalysts in the single fuel cell. A single fuel cell with a PtSn/WO3-MWCNT anode gave a better performance than one with a pristine PtSn/Vulcan anode, with a current density of around 79.8 mA cm−2 and an output power density of 20.5 mW cm−2.  相似文献   

3.
Highly fluorescent LaPO4:Ce/Tb@LaPO4@SiO2 (core/shell/Si) nanorods(NRs) were fabricated with an average length 100 nm by co-precipitation process at low temperature. X-ray diffraction (XRD), Transmission electron microscopy (TEM), energy dispersive X-ray analysis, Fourier transform infrared, optical absorption and photoluminescence spectral techniques were applied to investigate the crystal structure, phase purity, morphology, surface chemistry and optical properties of the as-prepared samples. XRD results confirmed the formation of highly crystalline with single phase, monoclinic type structure. TEM image illustrates the poly-dispersed, narrow size distributed, irregular size rod-shaped nanostructures, with mean diameters of 20 nm and average lengths up to 140 nm. FTIR spectral analysis confirmed the silica surface modification. The comparative emission spectral study shows highest luminescence intensity of core/shell NRs, due to a reduction in nonradiative transition rate. The emission intensity enhancement proves that growing of an inert LaPO4 layer on the surface of luminescent core-NRs was an effective way to suppress surface related quenching mechanism. These well crystalline, highly aqueous soluble along with extraordinary colloidal stability core/shell/Si NRs were extremely suitable material in fluorescent bio-labeling applications.  相似文献   

4.
《中国化学会会志》2017,64(4):440-448
Praseodymium (Pr3+)‐doped YF3 (core) and LaF3 ‐covered YF3 :Pr (core–shell) nanocrystals (NCs ) were prepared successfully by an ecofriendly, polyol‐based, co‐precipitation process, which were then coated with a silica shell by using a sol–gel‐based Stober method. X‐ray diffraction (XRD), transmission electron microscopy (TEM ), thermal analysis, Fourier transform infrared (FTIR) , UV /vis, energy bandgap, and photoluminescence studies were used to analyze the crystal structure, morphology, and optical properties of the nanomaterial. XRD and TEM results show that the grain size increases after sequential growth of crystalline LaF3 and the silica shell. The silica surface modification enhances the solubility and colloidal stability of the core–shell‐SiO2 NCs . The results indicate that the surface coating affects the optical properties because of the alteration in crystalline size of the materials. The emission intensity of silica‐modified NCs was significantly enhanced compared to that of core and core–shell NCs . These results are attributed to the formation of chemical bonds between core–shell and noncrystalline SiO2 shell via La–O–Si bridges, which activate the “dormant” Pr3+ ions on the surfaces of the nanoparticles. The luminescence efficiency of the as‐prepared core, core–shell, and core–shell‐SiO2 NCs are comparatively analyzed, and the observed differences are justified on the basis of the surface modification surrounding the luminescent seed core NCs .  相似文献   

5.
To investigate the wettability of different oxygen-containing functional group (OFG) surfaces, graphite substrates were used as a model for coal adsorbents. The substrates were modified with COOH, OH, CO, and OCH3. The adsorption-diffusion behavior of H2O molecules/water droplets on different OFG surfaces was investigated using molecular dynamics (MD) simulations with frontier orbital energy difference as a metric for different surface wettability degrees in quantum chemical analysis. The results indicated that the frontier orbital energy difference of the H2O molecule was 3.480, 3.491, 3.631, and 3.680 eV for PhCOOH, PhOH, PhCO, and PhOCH3, respectively. In addition, the equilibrium contact angle, interaction energy, and number of hydrogen bonds after the adsorption equilibrium of water droplets for COOH, OH, CO, and OCH3 surfaces were 22.34°, ?5.03 kcal/mol, and 652; –23.72°, ?4.19 kcal/mol, and 450; 68.01°, ?0.79 kcal/ mol, and 61; 90.51°, ?0.50 kcal/mol, and 28, respectively. The smaller the energy difference between the frontier orbitals of the H2O molecule and the OFG, the smaller the equilibrium contact angle between the water droplet and the OFG surface, the more hydrogen bonds were formed, and the larger the absolute value of the interaction energy, the better the wettability of the surface of the OFG. The order of wettability of the different OFG surfaces was COOH > OH > CO > OCH3, which is consistent with the radial distribution function and the analysis results for the extended area, etc. The results of density functional theory (DFT) calculations and MD simulations exhibited identical patterns, indicating the reasonableness of the simulations. This study may serve as a reference for the suppression of hydrophilicity in low-order coal and the enhancement of the flotation effect.  相似文献   

6.
With the aid of differential phonon spectrometrics (DPS) and surface stress detection, we show that HI and NaI solvation transforms different fractions of the HO stretching phonons from the mode of ordinary water centred at ∼3200 to the mode of hydration shell at ∼3500 cm−1. Observations suggest that an addition of the H  H anti-hydrogen-bond to the Zundel notion, [H(H2O)2]+, would be necessary as the HO bond due H3O+ has a 4.0 eV energy, and the H  H fragilization disrupts the solution network and the surface stress. The I and Na+ ions form each a charge centre that aligns, stretches, and polarize the O:HO bond, resulting in shortening the HO bond and its phonon blue shift in the hydration shell or at the solute-solvent interface. The solute capabilities of bond-number-fraction transition follow: fH = 0, fNa  C, and fI  1  exp(−C/C0) toward saturation, with C being the solute molar concentration and C0 the decay constant. The fH = 0 evidences the non-polarizability of the H+ because of the H  H formation. The linear fNa(C) suggests the invariance of the Na+ hydration shell size because of the fully-screened cationic potential by the H2O dipoles in the hydration shell but the nonlinear fI(C) fingerprints the I  I interactions at higher concentrations. Concentration trend consistency between Jones–Dole’s viscosity and the fNaI(C) coefficient may evidence the same polarization origin of the solution viscosity and surface stress.  相似文献   

7.
《中国化学快报》2020,31(6):1648-1653
Rational modification by functional groups was regarded as one of efficient methods to improve the photocatalytic performance of graphitic carbon nitride(g-C_3 N_4).Herein,g-C_3 N_4 with yellow(Y-GCN) and brown(C-GCN) were prepared by using the fresh urea and the urea kept for five years,respectively,for the first time.Experimental results show that the H2 production rate of the C-GCN is 39.06 μmol/h,which is about 5 times of the Y-GCN.Meantime,in terms of apparent quantum efficiency(AQ.E) at 420 nm,C-GCN has a value of 6.3% and nearly 7.3 times higher than that of Y-GCN(0.86%).The results of XRD,IR,DRS,and NMR show,different from Y-GCN,a new kind of functional group of —N=CH— was firstly in-situ introduced into the C-GCN,resulting in good visible light absorption,and then markedly improving the photocatalytic performance.DFT calculation also confirms the effect of the —N=CH— group band structure of g-C_3N_4.Furthermore,XPS results demonstrate that the existence of —N=CH— groups in C-GCN results in tight interaction between C-GCN and Pt nanoparticles,and then improves the charge separation and photocatalytic performance.The present work demonstrates a good example of "defect engineering" to modify the intrinsic molecular structure of g-C_3N_4 and provides a new avenue to enhance the photocatalytic activity of g-C_3N_4 via facile and environmental-friendly method.  相似文献   

8.
KOH activation of petroleum coke (PC) was conducted with 30 vol%H2 + 70 vol% N2 as carrier gas. TG-DTG, FTIR, elemental analysis, N2 adsorption, GC and XRD techniques were used to investigate the effects of hydrogen on the activation. During the initial stage of the activation, i.e. the carbonization of the PC, additional CH and CH2 species were formed due to the chemisorption of hydrogen on the nascent sites of the PC created by the removal of the surface heteroatom groups. The formation of the CH and CH2 species increased the quantity of ‘active sites’ which is favorable to the further activation reaction, and developed the porous structure of the activated carbons. The micropore volume and BET surface areas of the activated carbon prepared under 30 vol% H2 + 70 vol% N2 and with a relatively low KOH/PC weight ratio of 2:1 have been increased from 0.78 cm3/g and 1936 m2/g to 0.97 cm3/g and 2477 m2/g, respectively, compared to that prepared in pure N2 atmosphere with the same KOH/PC ratio.  相似文献   

9.
N-doped ZnO (NZO) thin films are synthesized via spray pyrolysis technique in aqueous medium treating zinc acetate and N,N-dimethylformamide as precursors. Influence of N doping on structural, optical and luminescence properties have been investigated. Films are nanocrystalline having hexagonal crystal structure. Raman analysis depicts an existence of NZnO structure in NZO thin film. XPS spectrum of N 1s shows the 400 eV peak terminally bonded, well screened molecular nitrogen (γ-N2). Lowest direct band gap of 3.17 eV has been observed for 10 at% NZO thin film. The UV, blue, and green deep-level emissions in photoluminescence of NZO films are due to Zn interstitials and O vacancies.  相似文献   

10.
《中国化学快报》2023,34(3):107609
Palladium-catalyzed non-directed CH functionalization provides an efficient approach for direct functionalization of arenes, but it usually suffers from poor site selectivity, limiting its wide application. Herein, it is reported for the first time that the carboxylic acid ligand of 3,5-dimethyladamantane-1-carboxylic acid (1-DMAdCO2H) can affect the site selectivity during the CH activation step in palladium-catalyzed non-directed CH functionalization, leading to highly para-selective CH olefination of TIPS-protected phenols. This transformation displayed good generality in realizing various other para-selective CH functionalization reactions such as halogenation, and allylation reactions. A wide variety of phenol derivatives including bioactive molecules of triclosan, thymol, and propofol, were compatible substrates, leading to the corresponding para-selective products in moderate to good yields. A preliminary mechanism study revealed that the spatial repulsion factor between carboxylic acid ligand and bulky protecting group resulted in the selective CH activation at the less sterically hindered para-position. This new model non-directed para-selective CH functionalization can provide a straightforward route for remote site-selective CH activations.  相似文献   

11.
In this paper, the process of ammonia borane (AB) hydrolysis generate H2 on the transition metal Fe@Co core-shell structure has been obtained. According to the different roles played by H2O molecules and the number of H2O molecules involved, there are three schemes of reaction paths. Route I does not involve the dissociation of H2O molecules and all H atoms come from AB. Moreover, the H2O molecule has no effect on the breaking of the BH bond or the NH bond. The reaction absorbs more heat during the formation of the second and third H2 molecules. Route II includes the dissociation of H2O molecules and the cleavage of BH or NH bonds, respectively, and the reaction shows a slight exotherm. Route III started from the break of the BN bond and obtained 3H2 molecules through the participation of different numbers of H2O molecules. After multiple comparative analyses, the optimal hydrolysis reaction path has been obtained, and the reaction process can proceed spontaneously at room temperature.  相似文献   

12.
《中国化学快报》2021,32(9):2846-2850
Gold nanoparticles (Au NPs) are nanoscale sources of light and electrons, which are highly relevant for their extensive applications in the field of photocatalysis. Although a number of research works have been carried out on chemical reactions accelerated by the energetic hot electrons/holes, the possibility of reaction pathway change on the plasmonic Au surfaces has not been reported so far. In this proof-of-concept study, we find that Au NPs change the reaction pathway in photooxidation of alkyne under visible light irradiation. This reaction produces benzil (COCO) without the presence of Au NPs. In contrast, as indicated by surface-enhanced Raman spectroscopic (SERS) results, the CC triple bonds (CC) adsorbed on Au NPs are converted into carboxyl (COOH) and acyl chloride (COCl) groups. The plasmonic Au NPs not only provide energetic charge carriers but also activate the reactant molecules as conventional heterogeneous catalysts. This study discloses the second role of plasmonic NPs in photocatalysis and bridges the gap between plasmon-driven and conventional heterogeneous catalysis.  相似文献   

13.
We report the biological activity of the new Schiff base ligand H2L (H2L = 6,6′-((1E,11E)-5,8-dioxa-2,11-diazadodeca-1,11-diene-1,12-diyl)bis(2,4-dichlorophenol)), its derived metal(II) complexes [Cu(L)] (1), [Co(L)] (2), [Ni(L)] (3) and [Zn(L)] (4), along with their structural characterizations by using various analytical and spectroscopic techniques. Electrochemical investigations showed that all of these Cu(II), Co(II) and Ni(II) complexes were reversibly reducible. Although the change of the number of unpaired electrons are different of the metal cations, they have an effect on the redox potentials of the Co(II)/(I), Ni(II)/(I) and Cu(II)/(I) couples. The 1H NMR and FTIR data concluded that the Schiff base ligand H2L acts as a hexadentate ligand coordinating with metal(II) ions through the oxygen atoms of the (COC), phenolic (COH) groups and nitrogen atom of the azomethine (CHN) group. UV-Visible absorption spectra studies clearly revealed the octahedral geometry of the prepared metal(II) complexes. Complexes 1 and 4 were found to be efficient in bringing about antimicrobial activities. The proposed mechanism of their antimicrobial activities has been discussed. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed the remarkable cytotoxicity of complex 1 (IC50 = 17 ± 1.3 μg/mL) on human breast cancer MCF-7 cells than Schiff base ligand H2L and complexes 2–4. Moreover, AO/EB staining assay revealed cell death due to apoptosis in MCF-7 cells and the generation of ROS by the Schiff base ligand H2L and its derived metal(II) complexes 1–4 may be a possible cause for their cytotoxic activity.  相似文献   

14.
The formation and reactivity of various types of hydrogen species on rutile TiO2(110), including surface hydroxyl group, surface hydride species and bulk hydrogen species sensitively depend on the oxygen vacancy concentration and structure.  相似文献   

15.
Gold nanoparticles (AuNPs) are the most studied nanomaterials due to their promising applications. However, surface capping of AuNPs is essential to protect aggregation for enhanced colloidal stability. In this study, a single step method was established to synthesize stable AuNPs using oil palm kernel (OPK) extract prepared in IL[EMIM][OAc] (1-ethyl-3-methylimidazolium acetate). Ionic liquids were used for phytochemicals extraction along with capping and stabilizing of AuNPs after their synthesis. The OPK extract reduced the gold precursor, and UV–vis spectroscopy revealed a sharp surface plasmon (SPR) peaks in the region of 524–529 nm, which confirmed the formation of AuNPs. UV–vis and TEM analysis indicated that microwave assisted synthesis was rapid to synthesize well dispersed and small sized AuNPs in comparison with conventional heating. FTIR analysis of kernels extract before and after its reaction with gold precursor identified the involvement of CH aromatic groups, polyphenolic OH groups, and carbonyl amide groups that are responsible for reduction of trivalent gold ions to AuNPs. EDAX and XPS analysis were performed to identify the elemental gold and its surface interaction with ILs and other organic moieties. Colloidal AuNPs kept at room temperature for periods of six months were remained stable. The change of pristine nanostructure arises due to involvement of different driving forces during growth of nanoparticles. Thermodynamically instability of nanomaterials may leads to Ostwald Repining (OR) or adopt complex pattern of growth and undergo coalesce and orientation attachment (OA). These models were fitted to compare the theoretically growth of particles along with actual increase of particles size. Experimental results suggested that OA growth was originated in early phase, however, it substituted and mainly controlled by OR growth pattern over time.  相似文献   

16.
The molecular structure of caffeine (3,7-dihydro-1,3,7-trimethyl-1H-purine-2,6-dione) was determined by means of gas electron diffraction. The nozzle temperature was 185 °C. The results of MP2 and B3LYP calculations with the 6-31G7 basis set were used as supporting information. These calculations predicted that caffeine has only one conformer and some of the methyl groups perform low frequency internal rotation. The electron diffraction data were analyzed on this basis. The determined structural parameters (rg and ∠α) of caffeine are as follows: <r(NC)ring> = 1.382(3) Å; r(CC) = 1.382(←) Å; r(CC) = 1.446(18) Å; r(CN) = 1.297(11) Å; <r(NCmethyl)> = 1.459(13) Å; <r(CO)> = 1.206(5) Å; <r(CH)> = 1.085(11) Å; ∠N1C2N3 = 116.5(11)°; ∠N3C4C5 = 121. 5(13)°; ∠C4C5C6 = 122.9(10)°; ∠C4C5N7 = 104.7(14)°; ∠N9–C4=C5 = 111.6(10)°; <∠NCHmethyl> = 108.5(28)°. Angle brackets denote average values; parenthesized values are the estimated limits of error (3σ) referring to the last significant digit; left arrow in parentheses means that this parameter is bound to the preceding one.  相似文献   

17.
《中国化学快报》2023,34(3):107289
The on-purpose direct propane dehydrogenation (PDH) has received extensive attention to meet the ever-increasing demand of propylene. In this work, by means of density functional theory (DFT) calculations, we systematically studied the intrinsic coordinating effect of Fe single-atom catalysts in PDH. Interestingly, the N and P dual-coordinated single Fe (Fe-N3P-C) significantly outperform the Fe-N4C site in catalysis and exhibit desired activity and selectivity at industrial PDH temperatures. The mechanistic origin of different performance on Fe-N3P-C and Fe-N4C has been ascribed to the geometric effect. To be specific, the in-plane configuration of Fe-N4 site exhibits low H affinity, which results in poor activity in CH bond activations. By contrast, the out-of-plane structure of Fe-N3P-C site exhibits moderate H affinity, which not only promote the CH bond scission but also offer a platform for obtaining appropriate H diffusion rate which ensures the high selectivity of propylene and the regeneration of catalysts. This work demonstrates promising applications of dual-coordinated single-atom catalysts for highly selective propane dehydrogenation.  相似文献   

18.
《Tetrahedron letters》2019,60(21):1437-1440
CH bond functionalization for CN and CC bond formations via cross-dehydrogenative coupling (CDC) of N-allylbenzamides with indole as amine source has been developed under a copper-catalyzed condition. To the best of our knowledge, these are the first examples in which different classes of N-containing compounds were directly prepared from the readily available N-allylbenzamides using an inexpensive catalyst-oxidant (CuSO4/TBHP) system. Further, it was applied for the synthesis of α-substituted N-allylbenzamides by using Grignard reagent as nucleophiles.  相似文献   

19.
《中国化学快报》2020,31(10):2689-2692
Largely limited by the high dissociation energy of the OO bond, the photocatalytic molecular oxygen activation is highly challenged, which restrains the application of photocatalytic oxidation technology for atmospheric pollutants removal. Herein, we design and fabricate the InP QDs/g-C3N4 compounds. The introduction of InP QDs promotes the charge transfer within the interface resulting in the effective separation of photo-generated carriers. Furthermore, InP QDs greatly facilitates the activation of molecular oxygen and promote the formation of O2 under visible-light illumination. These conclusions are identified by experimental and calculation results. Hence, NO can be combined with the O2 to form OONO intermediate to direct conversion into NO3. As a result, the NO removal ratio of g-C3N4 has a onefold increase after InP QDs loaded and the generation of NO2 is effectively inhibited. This work may provide a strategy to design highly efficient materials for molecular oxygen activation.  相似文献   

20.
Nowadays, to increase the usage of energy storage applications like electric cars or stationary storage, the cost of these manufacturers must be reduced. Our present study focuses on an alternate electrode production approach to suit the needs of today's lithium ion battery’s cost efficiency by using an eco-friendly method, the pulsed laser ablation method in liquid media technique, which was used for the first time to synthesize spinel lithium titanate anode, Li4Ti5O12 nanoparticles (LTO NPs), and incorporate them with polyether sulfone (PES) in just one step to form a PES/LTO nanocomposite. The evidence from XRD showed that the nanocomposite film is formed as a crystalline phase from a cubic spinel structure corresponding to LTO, with crystalline sizes around 9.4 nm. Furthermore, SEM revealed a semi-spherical distribution of LTO NPs throughout the PES matrix. Also, the elemental analysis provides the elemental peaks for C, S, Ti, and O, and no other elemental peaks do, confirming their purity. Moreover, the FT-IR investigation affirmed the interaction between PES and LTO NPs via the sulfone group with the breakage of the sulfur and oxygen double bond and the formation of a new link between SOLa and SOTi that may be responsible for the emergence of this band. Also, the absorption study confirmed the formation of localized states between occupied and unoccupied molecular orbital bands is made feasible by the chemical linkages between PES chains and LTO NPs. As a result of the dielectric investigation, LTO NPs are a good choice for usage as dopants to enhance the electrical characteristics of PES polymer. Overall, the PES/LTO nanocomposite films' improved dielectric and optical properties make them appropriate for energy storage applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号