首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, reduced graphene oxide (rGO)-supported noble metal (gold, silver, and platinum) nanoparticle catalysts were prepared via the one-pot facile co-reduction technique. Various measurement techniques were used to investigate the structures and properties of the catalysts. The relative intensity ratios of ID/IG in rGO/Au, rGO/Ag, rGO/Pt, and GO were 1.106, 1.078, 1.047, and 0.863, respectively. The results showed the formation of rGO and that noble metal nanoparticles were decorated on rGO. Furthermore, the catalytic activities of the designed nanocomposites were investigated via 4-nitrophenol. The catalysts were used in 4-nitrophenol reduction. The catalytic performance of the catalysts was evaluated using the apparent rate constant k values. The k value of rGO/Au was 0.618 min−1, which was higher than those of rGO/Ag (0.55 min−1) and rGO/Pt (0.038 min−1). The result proved that the rGO/Au catalyst exhibited a higher catalytic performance than the rGO/Ag catalyst and the rGO/Pt catalyst. The results provide a facile method for the synthesis of rGO-supported nanomaterials in catalysis.  相似文献   

2.
In this work, a novel 1,4-bis (4- aminophenylethynyl)benzene (OPE-NH2, a symmetric linear conjugated oligo(phenylene ethynylene)s derive) and chemically-reduced graphene oxide (rGO) nanocomposite (OPE-NH2/rGO) was synthesized by a simple self-assembly method. The OPE-NH2/rGO nanocomposite was stable and water soluble. The formation of OPE-NH2/rGO nanocomposite was ascribed to the π–π stacking interaction between the conjugated structure of OPE-NH2 and rGO as well as the electrostatic force between the amino group of OPE-NH2 and the carboxyl group on rGO, which was characterized by FT-IR, UV–vis spectra and fluorescence spectra. The OPE-NH2/rGO nanocomposite exhibited significantly improved electrocatalytic activity to the oxidization of dopamine (DA) than that of rGO or OPE-NH2. The electrochemical performances of OPE-NH2/rGO were dependent on the OPE-NH2 contents, and OPE-NH2 content of 5 wt% exhibited the highest activity. Compared with that of rGO, the nanocomposite presented superior high sensitivity with detection limit of 5 nM, excellent selectivity, wide linear range (0.01–60 μM) and good stability on the determination of DA. The practical application of the developed OPE-NH2/rGO nanocomposite modified electrode was successfully demonstrated for DA determination in human serum samples.  相似文献   

3.
An electrochemistry-assisted microstructuring process is developed for fabricating well-aligned reduced graphene oxide (rGO)-based micropatterns on arbitrary substrates using a combined method of photolithography, electrochemical reduction and wet etching techniques. The dimension of special-shaped rGO microarrays localized in an insulating GO matrix is effectively adjusted by changing GO reduction time without multi-mask patterning. The increased conductivity of rGO micropatterns by several orders of magnitude is achieved by controlling GO thickness and reduction time. The electrochemical activity of rGO micropatterns as microarray electrodes is confirmed by using ferricyanide in aqueous solution as the redox probe. The present method could be a scalable technology to conventional photolithography for fabricating arbitrary rGO micropatterns in an insulating GO matrix for their potential applications in next generation electronic and electrochemical devices.  相似文献   

4.
通过简单的溶剂热法以及其后续热处理过程,制备了NiO纳米花和NiO/还原氧化石墨烯(rGO)复合物。 在NiO/rGO复合物中,rGO作为基底生长NiO,与此同时,NiO则有效的避免了rGO的团聚。 采用热重分析(TG)、场发射扫描电子显微镜(FE-SEM)和X射线衍射对样品的成分、形貌和结构进行了表征。 NiO/rGO复合物(NiO和rGO的质量比为82.7∶17.3)电极呈现优异的电化学性能。 在1 A/g时,初始比电容为514.9 F/g,当材料完全活化后,其比电容高达600 F/g。 同时,在电流密度为10 A/g时,相比于1 A/g时的比电容保持率为83.5%。 此外,该电极材料具有非常优异的循环稳定性,6000次循环后电容衰减率为7.4%。 表明所制备的复合物是一种有应用价值的超级电容器电极材料。  相似文献   

5.
An aqueous dispersion of reduced graphene oxide (rGO) has been successfully prepared via chemical reduction of graphene oxide (GO) by hydrazine hydrate in the presence of aniline for the first time. The noncovalent functionalization of rGO by aniline leads to a rGO dispersion that can be very stable for several months without the observation of any floating or precipitated particles. Several analytical techniques including Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) have been used to characterize the resulting rGO. Taking advantages of the fact reducing ability of aniline toward AgNO(3), we further demonstrated the subsequent decoration of rGO with Ag nanoparticles (AgNPs) by in situ chemical reduction of silver salts. It was found that such AgNP/rGO nanocomposites exhibit good catalytic activity toward the reduction of hydrogen peroxide (H(2)O(2)), leading to an enzymeless sensor with a fast amperometric response time of less than 2s. The linear detection range is estimated to be from 100 μM to 80 mM (r=0.9991), and the detection limit is estimated to be 7.1 μM at a signal-to-noise ratio of 3.  相似文献   

6.
The sodium‐ion storage properties of FeS–reduced graphene oxide (rGO) and Fe3O4‐rGO composite powders with crumpled structures have been studied. The Fe3O4‐rGO composite powder, prepared by one‐pot spray pyrolysis, could be transformed to an FeS‐rGO composite powder through a simple sulfidation treatment. The mean size of the Fe3O4 nanocrystals in the Fe3O4‐rGO composite powder was 4.4 nm. After sulfidation, FeS nanocrystals of size several hundred nanometers were confined within the crumpled structure of the rGO matrix. The initial discharge capacities of the FeS‐rGO and Fe3O4‐rGO composite powders were 740 and 442 mA h g?1, and their initial charge capacities were 530 and 165 mA h g?1, respectively. The discharge capacities of the FeS‐rGO and Fe3O4‐rGO composite powders at the 50th cycle were 547 and 150 mA h g?1, respectively. The FeS‐rGO composite powder showed superior sodium‐ion storage performance compared to the Fe3O4‐rGO composite powder.  相似文献   

7.
For verifying the influence of donor–acceptor supramolecules on photovoltaic properties, different hybrids were designed and used in organic solar cells. In this respect, reduced graphene oxide (rGO) was functionalization with 2‐thiophene acetic acid (rGO‐f‐TAA) and grafted with poly(3‐dodecylthiophene) (rGO‐g‐PDDT) and poly(3‐thiophene ethanol) (rGO‐g‐PTEt) to manipulate orientation of poly(3‐hexylthiophene) (P3HT) assemblies. Face‐on, edge‐on, and flat‐on orientations were detected for assembled P3HTs on rGO and its functionalized and grafted derivatives, respectively. Alteration of P3HT orientation from face‐on to flat‐on enhanced current density (J sc), fill factor (FF), and power conversion efficiency (PCE) and thus J sc = 7.11 mA cm?2, FF = 47%, and PCE = 2.14% were acquired. By adding phenyl‐C71‐butyric acid methyl ester (PC71BM) to active layers composed of pre‐designed P3HT/rGO, P3HT/rGO‐f‐TAA, P3HT/rGO‐g‐PDDT, and P3HT/rGO‐g‐PTEt hybrids, photovoltaic characteristics further improved, demonstrating that supramolecules appropriately mediated in P3HT:PC71BM solar cells. Phase separation was more intensified in best‐performing photovoltaic systems. Larger P3HT crystals assembled onto grafted rGOs (95–143 nm) may have acted as convenient templates for the larger and more intensified phase separation in P3HT:PCBM films. The best performances were reached for P3HT:P3HT/rGO‐g‐PDDT:PCBM (J sc = 9.45 mA cm?2, FF = 54%, and PCE = 3.16%) and P3HT:P3HT/rGO‐g‐PTEt:PCBM (J sc = 9.32 mA cm?2, FF = 53%, and PCE = 3.11%) photovoltaic systems. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55 , 1877–1889  相似文献   

8.
《Electroanalysis》2017,29(2):587-594
A sensitive and selective hydrazine sensor was developed by β‐cyclodextrin modified palladium nanoparticles decorated reduced graphene oxide (PdNPs‐β‐CD/rGO) nanocomposite. The PdNPs‐β‐CD/rGO hybrid material was prepared by simple electrochemical method. The hydrophobic cavity of β‐CD ineracts with palladium nanoparticles by hydrophobic interaction and further it is uniformly assembled on the rGO surface through hydrogen bond formation, which is clearly confirmed by FT‐IR, FESEM and TEM. The high electrocatalytic activity of hydrazine oxidation was observed at −0.05 V (vs. Ag/AgCl) on PdNPs‐β‐CD/rGO modified electrode; due to the excellent stabilization, high catalytic activity and large surface area of the PdNPs‐β‐CD/rGO composite. The PdNPs‐β‐CD/rGO fabricated hydrazine sensor exhibited an excellent analytical performance, including high sensitivity (1.95 μA μM−1 cm−2), lower detection limit (28 nM) and a wide linear range (0.05 to 1600 μM). We also demonstrated that the PdNPs‐β‐CD/rGO nanocomposite modified electrode is a highly selective and sensitive sensor towards detection of hydrazine among the various interfering species. Hence, the proposed hydrazine sensor is able to determine hydrazine in different water samples.  相似文献   

9.
A flexible composite paper Fe?Cu‐based metal‐organic framework (MOF)/reduced graphene oxide (rGO) (Fe?CuMOF/rGO) electrode was prepared by using a simple electrochemical method for the simultaneous detection of catechol (CC) and resorcinol (RC). Free‐standing, flexible and double‐sided Fe?CuMOF/rGO composite paper was obtained by applying the electrochemical deposition process on the rGO paper electrode in the solution containing Fe?CuMOF composite. The morphological analysis of Fe?CuMOF/rGO composite paper showed that sea urchin‐like structures formed on the rGO electrode surface consist of numerous sharp‐edged nanorods of Fe?CuMOF. Flexible Fe?CuMOF/rGO paper electrode exhibited high sensitivity, wide linear range and low detection limit for the simultaneous determination of CC and RC. The linear ranges of concentration for CC and RC were 0.1–800 and 0.1–720 μM, respectively, and the corresponding limits of detection (S/N=3) were 0.016 and 0.020 μM. The outstanding performance of this flexible electrode could be attributed to the sharp‐edged urchin‐like Fe?CuMOF structures which provide an increment of the surface area and the electrochemical activity of the composite paper electrode. Stability tests showed that Fe?CuMOF/rGO composite paper electrode has excellent flexibility, high durability, and good reproducibility. Furthermore, this electrode exhibited high sensitivity and selectivity for the determination of CC and RC in real sample analysis.  相似文献   

10.
《中国化学快报》2020,31(6):1392-1397
Two-dimensional(2 D) heterostructural Ni_2 P/rGO is successfully fabricated by in-situ phosphating selfassembled NiO/rGO composites and shows the enhanced electrochemical performances.In this design,the rGO sheets effectively reduce the lattice strain created during the phase transformation from NiO to Ni_2 P,thereby maintaining ultrathin nanostructures of Ni2 P.The resulting Ni_2 P/rGO layered heterostructure gives the composite plenty of pores or channels,good electrical conductivity and well-exposed active sites.Density functional theory(DFT) calculation further demonstrates that the Fermi energy level and electron localize of near Ni atoms in Ni_2 P is higher than that of NiO,which endow Ni_2 P with faster and more reversible redox reactivity in dynamic.Benefiting from their structural and compositional merits,the as-synthesized Ni2 P/rGO exhibits high specific discharge capacity and excellent rate performance.Furthermore,a hybrid supercapacitor built with Ni_2 P/rGO and activated carbon shows a high specific energy of 38.6 Wh/kg at specific power of 375 W/kg.  相似文献   

11.
Photosensitizer-functionalized reduced graphene oxide (rGO) nanoparticles are promising materials for photodynamic therapy in cancer management. In this study, rGO is synthesized by a green route employing glucose as the reducing agent and functionalized with photosensitizer, protoporphyrin IX (PPIX) in a convenient, single-step procedure. PPIX-functionalized rGO exhibits photodynamic effect against cancer cells (HeLa) at 0.001 mg mL−1 under visible light illumination (635 nm). A 50% elimination of HeLa cells after 5 min irradiation is observed while very low phototoxicity (80% cell viability) is noted against normal dermal fibroblast cells. A positive correlation with ROS accumulation and increased expression of caspase-3 in PPIX-functionalized rGO-treated cancer cells is also established. The results evidence a simple and cost-effective route for developing photosensitizer-functionalized rGO for effective and selective killing of cancer cells.  相似文献   

12.
张彬  张一波  杨向光 《应用化学》2014,31(12):1447-1452
以水滑石为前驱体合成微米花/纳米片多级结构过渡金属复合氧化物CoFe2O4,一种高性能锂离子电池负极材料。 通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)等技术手段对其进行结构表征,发现得到的复合氧化物为单一晶相,且具有多级结构。 电化学性能测试表明,得到的负极材料具有高比容量和倍率性能。 通过还原氧化石墨烯(rGO)对CoFe2O4进行表面包覆制备CoFe2O4/rGO,其循环稳定性得到大幅度提高。  相似文献   

13.
The unique two-dimensional structure and surface chemistry of reduced graphene oxide (rGO) along with its high electrical conductivity can be exploited to modify the electrochemical properties of ZnO nanoparticles (NPs). ZnO–rGO nanohybrids can be engineered in a simple new two-step synthesis, which is both fast and energy-efficient. The resulting hybrid materials show excellent electrocatalytic and photocatalytic activity. The structure and composition of the as-prepared bare ZnO nanorods (NRs) and the ZnO–rGO hybrids have been extensively characterised and the optical properties subsequently studied by UV/Vis spectroscopy and photoluminescence (PL) spectroscopy (including decay lifetime measurements). The photocatalytic degradation of Rhodamine B (RhB) dye is enhanced using the ZnO–rGO hybrids as compared to bare ZnO NRs. Furthermore, potentiometry comparing ZnO and ZnO–rGO electrodes reveals a featureless capacitive background for an Ar-saturated solution whereas for an O2-saturated solution a well-defined redox peak was observed using both electrodes. The change in reduction potential and significant increase in current density demonstrates that the hybrid core–shell NRs possess remarkable electrocatalytic activity for the oxygen reduction reaction (ORR) as compared to NRs of ZnO alone.  相似文献   

14.
Highly efficient and easy recyclable monolithic photocatalysts with ideal separation/transport route for photogenerated charge carriers are much desired. In this work, a ZnO seed‐induced growth approach is developed to fabricate a ternary monolithic photomembrane, that is, ZnS/CdS heterojunction nanorods in situ grow into the interspaces of multilayer reduced graphene oxide (rGO) sheets (denoted as ZnS/CdS/rGO). The monolithic ZnS/CdS/rGO photomembrane can serve as an efficient visible‐light photoactive membrane for photocatalytic (PC) or photoelectrochemical (PEC) hydrogen generation. The fast electron transport of 1D CdS nanorods, the excellent electronic conductivity of multilayer stacked rGO sheets, the intense visible‐light absorption of CdS, the unique hierarchical structure, and double heterojunctions (ZnS/CdS and CdS/rGO) efficiently boost the photogenerated electron‐hole pairs separation and transfer across the interfacial domain of the photomembrane under visible‐light irradiation. Furthermore, the superior stability and reusability of the photomembrane is achieved by the ideal process of photogenerated electron‐hole pair separation/transfer, i.e., holes transfer to ZnS and electrons transfer to rGO to inhibit CdS from photocorrosion.  相似文献   

15.
Hybrid materials in which reduced graphene oxide (rGO) is decorated with Au nanoparticles (rGO–Au NPs) were obtained by the in situ reduction of GO and AuCl4?(aq) by ascorbic acid. On laser excitation, rGO could be oxidized as a result of the surface plasmon resonance (SPR) excitation in the Au NPs, which generates activated O2 through the transfer of SPR‐excited hot electrons to O2 molecules adsorbed from air. The SPR‐mediated catalytic oxidation of p‐aminothiophenol (PATP) to p,p′‐dimercaptoazobenzene (DMAB) was then employed as a model reaction to probe the effect of rGO as a support for Au NPs on their SPR‐mediated catalytic activities. The increased conversion of PATP to DMAB relative to individual Au NPs indicated that charge‐transfer processes from rGO to Au took place and contributed to improved SPR‐mediated activity. Since the transfer of electrons from Au to adsorbed O2 molecules is the crucial step for PATP oxidation, in addition to the SPR‐excited hot electrons of Au NPs, the transfer of electrons from rGO to Au contributed to increasing the electron density of Au above the Fermi level and thus the Au‐to‐O2 charge‐transfer process.  相似文献   

16.
In this work, we develop a novel environmentally friendly strategy toward one-pot synthesis of CuS nanoparticle-decorated reduced graphene oxide (CuS/rGO) nanocomposites with the use of l-cysteine, an amino acid, as a reducing agent, sulfur donor, and linker to anchor CuS nanoparticles onto the surface of rGO sheets. Upon visible light illumination (λ > 400 nm), the CuS/rGO nanocomposites show pronounced enhanced photocurrent response and improved photocatalytic activity in the degradation of methylene blue (MB) compared to pure CuS. This could be attributed to the efficient charge transport of rGO sheets and hence reduced recombination rate of excited carriers.  相似文献   

17.
In this article, we successfully fabricated the bionanocomposites using cellulose nanocrystals (CNCs) and reduced graphene oxide (rGO) reinforced into biodegradable polylactic acid (PLA) matrix through melt‐mixing method. Due to the affinity difference between hydrophilic CNC and hydrophobic PLA, the surface modification of CNC was employed using quaternary ammonium salts (CTAB) as a surfactant. The nanocomposites were developed using different blend ratios of CNC/modified CNC (1, 2, and 3) wt% and (0.5 wt%) rGO into the polymer matrix. The morphology of CNC, q‐CNC (modified CNC), and nanocomposites were inspected by atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). It is demonstrated from tensile tests that, the nanocomposite with 1 wt% CNC and rGO showed maximum tensile strength compared with PLA and its nanocomposites. Moreover, the nanocomposite with 1 wt% CNC and rGO was also having maximum thermal stability. From cytotoxicity evaluation, it is observed that all the nanocomposites are nontoxic and cytocompatible to HEK293 cells. In addition to this, the nanocomposite with q‐CNC showed enhanced barrier properties compared with PLA and PLA/CNC/rGO nanocomposite. The results obtained from different characterizations showed that the incorporation of surfactant onto CNC improved the dispersion in PLA but at the same time deteriorated the PLA matrix.  相似文献   

18.
Reduced-graphene oxide (rGO) sheets have been functionalized by covalently linking β-cyclodextrin (β-CD) cavities to the sheets via an amide linkage. The functionalized β-CD:rGO sheets, in contrast to rGO, are dispersible over a wide range of pH values (2-13). Zeta potential measurements indicate that there is more than one factor responsible for the dispersibility. We show here that planar aromatic molecules adsorbed on the rGO sheet as well as nonplanar molecules included in the tethered β-CD cavities have their fluorescence effectively quenched by the β-CD:rGO sheets. The β-CD:rGO sheets combine the hydrophobicity associated with rGO along with the hydrophobicity of the cyclodextrin cavities in a single water-dispersible material.  相似文献   

19.
The role of reduced graphene oxide(rGO) in the enhancement of photo-conversion efficiency of ZnO films for photoelectrochemical(PEC) water-splitting applications was analyzed. ZnO and rGO-hybridized ZnO(rGO/ZnO) films were prepared via a two-step electrochemical deposition method followed by annealing at 300 °C under argon gas flow. The physical, optical and electrochemical properties of the films were characterized to identify the effect of rGO-hybridization on the applied bias photon-to-current efficiency(ABPE) of ZnO. Scanning electron microscopy and X-ray diffraction indicated the formation of verticallyaligned, wurtzite-phase ZnO nanorods. Diffuse-reflectance UV–visible spectroscopy indicated that rGO-hybridization was able to increase the light absorption range of the rGO/ZnO film. UPS analysis showed that hybridization with rGO increased the band gap of ZnO(3.56 eV) to 3.63 eV for rGO/ZnO sample,which may be attributed to the Burstein–Moss effect. Photoluminescence(PL) spectra disclosed that rGOhybridization suppressed electron-hole recombination due to crystal defects. Linear sweep voltammetry of the prepared thin films showed photocurrent density of 1.0 and 1.8 m A/cm~2 for ZnO and rGO/ZnO at+0.7 V, which corresponded to an ABPE of 0.55% and 0.95%, respectively. Thus, this report highlighted the multi-faceted role of rGO-hybridization in the enhancement of ZnO photo-conversion efficiency.  相似文献   

20.
Field‐grading materials (FGMs) are used to reduce the probability for electrical breakdowns in critical regions of electrical components and are therefore of great importance. Usually, FGMs are heavily filled (40 vol.%) with semi‐conducting or conducting particles. Here, polymer‐grafted reduced graphene oxide (rGO) is used as a filler to accomplish percolated networks at very low filling ratios (<2 vol.%) in a semi‐crystalline polymer matrix: poly(ethylene‐co‐butyl acrylate) (EBA). Various simulation models are used to predict the percolation threshold and the flake‐to‐flake distances, to complement the experimental results. A substantial increase in thermal stability of rGO is observed after surface modification, either by silanization or subsequent polymerizations. The non‐linear DC resistivity of neat and silanized rGO and its trapping of charge‐carriers in semi‐crystalline EBA are demonstrated for the first time. It is shown that the polymer‐grafted rGO improve the dispersibility in the EBA‐matrix and that the graft length controls the inter‐flake distances (i.e. charge‐carrier hopping distances). By the appropriate selection of graft lengths, both highly resistive materials at 10 kV mm‐1 and FGMs with a large and distinct drop in resistivity (six decades) are obtained, followed by saturation. The nonlinear drop in resistivity is attributed to narrow inter‐flake distance distributions of grafted rGO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号