首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An analysis of the anisotropic Heisenberg model is carried out by solving the Bethe ansatz solution of the model numerically as a function of the anisotropy parameter for finite N. A brief introduction to the limit of the infinite chain is presented. The energy for a few special limiting cases of the anisotropy parameter in the Hamiltonian are worked out. Numerical results for finite cycles as well as for the infinite chain are given. Comparison can then be made with the case of finite increasing N. © 1997 John Wiley & Sons, Inc.  相似文献   

2.
In a previous work, we proposed an extended model for intermolecular excited-state proton transfer to the solvent. The model invoked an intermediate species, the contact ion-pair RO(-)...H(3)O(+), where a proton is strongly hydrogen bonded to the conjugated photabase RO(-). In this study we tested the extended model by measuring the transient absorption and emission of 8-hydroxypyrene-1,3,6-trisulfonate (HPTS) in an aqueous solution in the presence of a large concentration of mineral acids. In a neutral pH solution, the pump-probe signal consists of three time components, <1, 4, and 100 ps. The 4 ps time component, with a relative amplitude of about 0.3, was attributed to the formation of the contact ion-pair and the long 100 ps component to the dissociation of the ion-pair to a free proton and RO(-). In the presence of acid, the recombination of an excess proton competes with the geminate recombination. At a high acid concentration, the recombination process alters the time-dependent concentrations of the reactant, product and intermediate contact ion-pair. We observed that when the acid concentration increases, the amplitude of both the long and intermediate time components decreases. At about 3 M of acid, both components almost disappear. Model calculations of the acid effect on the transient HPTS signal indeed showed that the amplitude of the intermediate time component decreases as the excess proton concentration increases.  相似文献   

3.
Nanocharacterization techniques such as nanoindentation and atomic force microscopy were used to investigate the exterior durability of waterborne coatings improved with inorganic nanosized UV-absorbers. Nanocomposite coatings for exterior uses of wood were formulated with different type of nanoparticles and their performance was evaluated trough artificial aging. Nanoindentation in continuous stiffness mode was used to demonstrate the changes of hardness and Young’s modulus of the coatings after accelerated weathering. The degradation mechanism of the surface coatings was investigated with atomic force microscopy that has provided valuable information on the morphological and microstructural changes of the surface coatings with the artificial aging. Additionally, the glass transition temperature and optical appearance changes were reported. The results obtained have shown that the nanoindentation technique in conjunction with atomic force microscopy can be satisfactorily used for durability investigation and service life prediction of nanocomposite coatings for wood.  相似文献   

4.
The application of Marcus theory of electron transfer reactions for the case of radical ion chemiluminescence of 9,10-diphenylanthracene (DPA) gives a high rate constant value (109–1010 M?1 s?1) for the formation of the second triplet state (T2). It is suggested that the near infrared emission observed during electrochemiluminescence of DPA is due to T2 → T1 fluorescence based on the high yield of T2 (≈0.7) in the electron transfer reaction.  相似文献   

5.
6.
From the intensity behaviour of a 29 cm?1 Raman shift of α-Al2O3:Cr3+ as a function of the incident power, it is concluded that the shift is due to an electronic Raman transition between the components of the excited state 2E. Population of the excited states is obtained through a pumping mechanism induced by the laser radiation λo = 514.5 nm which at the same time serves as a Raman probe.  相似文献   

7.
LaO(2) was produced in a pulsed laser-vaporization molecular beam source and studied by mass-analyzed threshold ionization (MATI) spectroscopy and ab initio electronic structure calculations. The calculations included density functional theory, second-order perturbation theory, coupled cluster theory, and complete active space self-consistent field methods. The adiabatic ionization energy of the molecule and vibrational frequencies of the molecule and its cation were measured accurately for the first time from the MATI spectrum. Numerous ionization processes of lanthanum dioxide, peroxide, and superoxide were considered; the (3)B(2) ← (4)B(2) electronic transition of the dioxide was assigned upon comparison with the observed spectrum. The ionization energy and O-La-O bending frequency of the (4)B(2) neutral state are 4.9760 (6) eV and 92 cm(-1), respectively. The La-O stretching and O-La-O bending frequencies of the (3)B(2) cationic state are 656 and 122 cm(-1), respectively. The (4)B(2) state is formed by two electron transfer from lanthanum to oxygen atoms, and the (3)B(2) state is produced by the further removal of a lanthanum 6s-based electron.  相似文献   

8.
In order to elucidate the difference between nitramine energetic materials, such as RDX (1,3,5-trinitro-1,3,5-triazacyclohexane), HMX (1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane), and CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane), and their nonenergetic model systems, including 1,4-dinitropiperazine, nitropiperidine, nitropyrrolidine, and dimethylnitramine, both nanosecond mass resolved excitation spectroscopy and femtosecond pump-probe spectroscopy in the UV spectral region have been employed to investigate the mechanisms and dynamics of the excited electronic state photodissociation of these materials. The NO molecule is an initial decomposition product of all systems. The NO molecule from the decomposition of energetic materials displays cold rotational and hot vibrational spectral structures. Conversely, the NO molecule from the decomposition of model systems shows relatively hot rotational and cold vibrational spectra. In addition, the intensity of the NO ion signal from energetic materials is proportional to the number of nitramine functional groups in the molecule. Based upon experimental observations and theoretical calculations of the potential energy surface for these systems, we suggest that energetic materials dissociate from ground electronic states after internal conversion from their first excited states, and model systems dissociate from their first excited states. In both cases a nitro-nitrite isomerization is suggested to be part of the decomposition mechanism. Parent ions of dimethylnitramine and nitropyrrolidine are observed in femtosecond experiments. All the other molecules generate NO as a decomposition product even in the femtosecond time regime. The dynamics of the formation of the NO product is faster than 180 fs, which is equivalent to the time duration of our laser pulse.  相似文献   

9.
《Chemical physics letters》1986,123(6):489-492
Fluorescence from an upper excited state of o-hydroxybenzaldehyde vapor at room temperature is reported. For excitation at the O-O band of the absorption from the ground state to the upper excited state, the fluorescence spectrum is located in the wavelength range between 250 and 300 nm and the fluorescence quantum yield is 1.6 × 10t−.  相似文献   

10.
[reaction: see text] Thermal generation of singlet excited states is unusual in organic chemistry. The potential energy surface for the thermal ring-opening of 4-methylene-bicyclo[3.1.0]hex-2-ene-6-ylidene (1) was calculated at the CASSCF level of theory and found to produce alpha,3-didehydrotoluene in its biradical ground state (S(0)) and/or its zwitterionic excited state (S(1)).  相似文献   

11.
The weak (φf < 103) fluorescence at around 430 nm of the S2 upper excited singlet state of metal-free phthalocyanine and metallophthalocyanines is presented. Polarization measurements indicate that the emission is short-lived (< 800 ps) contrary to the intense (φf > 0.3) normal emission at around 700 nm originating from S1 and having a lifetime in the 4.1 to 10.6 ns range, depending on the solvent. The short wavelength emitting S2 excited state has been populated by a two photon absorption process using the excitation light at 695 nm of a pulsed ruby laser. This process is shown not to involve the triplet state but the following stepwise two photon absorption process: .  相似文献   

12.
We describe the development of empirical potential functions for the study of the excited state intramolecular proton transfer reaction in 1-(trifuloroacetylamino)-naphtaquinone (TFNQ). The potential is a combination of the standard CHARMM27 force field for the backbone structure of TFNQ and an empirical valence bond formalism for the proton transfer reaction. The latter is parameterized to reproduce the potential energies both in the ground and the excited state, determined at the CASPT2 level of theory. Parameters describing intermolecular interactions are fitted to reproduce molecular dipole moments computed at the CASSCF level of theory and to reproduce ab initio hydrogen bonding energies and geometries for TFNQ-water bimolecular complexes. The utility of this potential energy function was examined by computing the potentials of mean force for the proton transfer reactions in the gas phase and in water, in both electronic states. The ground state PMF exhibits little solvent effects, whereas computed potential of mean force shows a solvent stabilization of 2.5 kcal mol−1 in the product state region, suggesting proton transfer is more pronounced in polar solvents, consistent with experimental findings. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Contribution to the Fernando Bernardi Memorial Issue.  相似文献   

13.
The microenvironmental dependence of excited state prototropism of 1-naphthol and the corresponding changes in its fluorescence emission is utilized to monitor the acyl chain melting phase transition behavior of liposome membrane made from human erythrocyte lipids. A sharp increase in the ratio of neutral/anionic form fluorescence intensity is noticed at the phase transition temperature (19 degrees C). This provides a convenient method for obtaining phase transition temperature in lipid membranes. The membrane modifying effect of cholesterol on the erythrocyte liposome is successfully sensed by 1-naphthol fluorescence.  相似文献   

14.
Electron transfer from the first excited singlet state of a polymethine cyanine dye. DODCI, to various electron acceptors (p-benzoquinone,p-dinitrobenzene and methylviologen) was investigated using picosecond fluorescence and absorption spectroscopy. The electron transfer to methylviologen was confirmed by conventional nanosecond laser spectroscopy. Its efficiency, as expressed by the ratio k5/(k4 + k5) = 0.07. can be explained by coulombic repulsion in the initial radical pair. On the other hand, although fluorescence quenching by p-BQ and p-DNB is very efficient, no electron transfer was observed.  相似文献   

15.
The favored fragmentation pathway for protonated and alkylated pyridinium cations of the general formula p-XC(6)H(4)CH(2)CH(2)CH=CH Py(+)R (R=H, Me; Py=pyridine) is a C-C homolytic cleavage. The tendency to form radicals is higher for alkylated pyridinium cations than for the protonated ones that can also afford closed-shell products. Theoretical calculations show that the singlet-triplet gap for transient structures with an elongated benzylic C-C bond is very low and the formation of radicals may result from mixing of these states. In addition to the notable substituent effect on the fragmentation efficiency of the cations under study, calculated results show a clear substituent effect on the singlet-triplet transitions. We also observe that triphenylphosphonium cations behave notably different. Thus, the pyridinium system that contains a p-chloro benzyl moiety loses a benzyl radical readily while the analogous triphenylphosphonium cation is very stable under the same conditions.  相似文献   

16.
Carotenoids are the crucial pigments involved in photoprotection and in scavenging harmful free radicals in all living organisms. The underlying chemical processes are charge transfer and free radical reactions, both of them leading to carotenoid radical cation (Car*+) formation. Accurate knowledge of the molecular properties of Car*+ is thus a prerequisite for understanding of their function as photoprotective and antioxidant agents. Despite their fundamental importance in nonphotochemical quenching in green plants, only little is known about the Car*+ excited states and their dynamics. Our combined experimental and theoretical investigation employing femtosecond time-resolved pump-probe spectroscopy and quantum chemical calculations proves the existence of a second low-lying pipi* excited-state energetically below the well-known strongly allowed excited-state responsible for the intense absorption of Car*+ in the near-IR region. Hence, we suggest denoting the latter state as D3 state in the future. Our findings have also implications for nonphotochemical quenching in green plants, since direct quenching of chlorophyll excited states by Forster energy transfer to Car*+ is possible and efficient.  相似文献   

17.
The low-temperature component of thermally induced recovery after a plastic deformation of amorphous polymers and silicate glasses is a result of the transition of such materials into an excited state with subsequent return of the disordered structure of the glass from the excited to the ground state. This process was satisfactorily interpreted within the framework of the excited state model.  相似文献   

18.
19.
20.
An analytical formulation for the geometrical derivatives of excitation energies within the time-dependent density-functional tight-binding (TD-DFTB) method is presented. The derivation is based on the auxiliary functional approach proposed in [Furche and Ahlrichs, J Chem Phys 2002, 117, 7433]. To validate the quality of the potential energy surfaces provided by the method, adiabatic excitation energies, excited state geometries, and harmonic vibrational frequencies were calculated for a test set of molecules in excited states of different symmetry and multiplicity. According to the results, the TD-DFTB scheme surpasses the performance of configuration interaction singles and the random phase approximation but has a lower quality than ab initio time-dependent density-functional theory. As a consequence of the special form of the approximations made in TD-DFTB, the scaling exponent of the method can be reduced to three, similar to the ground state. The low scaling prefactor and the satisfactory accuracy of the method makes TD-DFTB especially suitable for molecular dynamics simulations of dozens of atoms as well as for the computation of luminescence spectra of systems containing hundreds of atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号