首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neutron diffraction investigations have shown that a 2% substitution Fe atoms for Pd radically alters the magnetic structure of UPd2Ge2. If the magnetic structure in the undoped compound at T>50 K consists of a longitudinal spin density wave (LSDW) with “square” modulation, then in polycrystalline U(Pd0.98Fe0.02)2Ge2 a “simple” antiferromagnetic (AF) phase is observed below 65 K and a sinusoidally modulated LSDW-AF phase is observed between 65 K and the Neel temperature T N =135 K. In the interval 65> T>135 K the magnetic cell is incommensurate with the crystal cell, with the exception of the point T=93 K, where the wave vector of the magnetic structure passes through a “commensurate” value equal to 0.75. Below T N the magnetic moments of the uranium atoms are always parallel to the tetragonal axis c of the unit cell. Pis’ma Zh. éksp. Teor. Fiz. 66, No. 9, 615–619 (10 November 1997)  相似文献   

2.
Polycrystalline sample of ErFe2Ge2 was investigated by means of magnetic susceptibility, heat capacity and electrical resistivity measurements, as well as by powder neutron diffraction. All these experiments yielded an evidence of magnetic ordering setting at about 3 K. The low-temperature neutron data revealed the formation of a sine-modulated commensurate antiferromagnetic structure characterized by the propagation vector k=(0, 0, ). The erbium magnetic moment is aligned parallel to the crystallographic a-axis. At T=1.55 K it is equal to 7.06(5) μB.  相似文献   

3.
TmCu2Ge2 compound crystallizes in the tetragonal ThCr2Si2-type crystal structure. The neutron diffraction reveals the presence of an incommensurate antiferromagnetic order below TN=2.5 K. The Tm magnetic moment of 5.0(1) μB at 0.47 K is parallel to the c-axis. The order is described by the propagation vector k=[kx, kx, 0], where kx=0.117(3). The increase of the values of the components kx near the Néel temperature is observed.  相似文献   

4.
In this work neutron diffraction studies of Tb2Rh3Si5 compound are reported. The compound crystallizes in the monoclinic crystal structure of Lu2Co3Si5-type. At 1.5 K an antiferromagnetic ordering with a propagation vector k=(1/2;1/2;1/2) was observed. The Tb magnetic moments of 9.8(2) μB form a non-collinear magnetic structure. In the vicinity of Néel temperature of 8 K a change of the magnetic ordering is evidenced. The change seems to be connected with phase transition from commensurate to incommensurate sine-wave modulation of the Tb magnetic moments.  相似文献   

5.
High-quality powder XRD data of the compound ErFe4Ge2 collected in the ESRF beam line BM16, are presented for the entire magnetically ordered regime (TN=44 K). The data analysis reveals the occurrence of a double symmetry breaking at the magnetic transition. This experiment has allowed us to distinguish between structural and magnetic satellites, both present in the neutron patterns, and to demonstrate the interdependence of structural and magnetic transitions. The high-temperature (HT) phase disproportionates by a first-order transition into two distinct phases: P42/mnm (Tc, TN=44 K)→Cmmm (majority LT phase)+Pnnm (minority IT Phase) which coexist in proportions varying with temperature down to 4 K. The phase diagram comprises three temperature regions: (a) the HT range with T>TN for the tetragonal P42/mnm phase; (b) the IT (intermediate temperature) range, 20 K<T<TN, where the two phases coexist in strongly variable proportions and the Pnnm phase reaches its highest concentration (≈31%) around 30 K and (c) the LT (low temperature) range, 1.5–20 K, where the Cmmm phase is dominating (up to 95%). We suggests that this phenomenon is the result of competing magneto-elastic mechanisms involving the Er crystal field anisotropy, the Er–Er, Er–Fe and the Fe–Fe exchange interactions and their coupling with the lattice strains.  相似文献   

6.
In this paper, we present our recent experimental results of magnetic and transport properties of Gd1−xLaxMn2Ge2 intermetallic compounds with the ThCr2Si2-type layered structure. The results obtained indicate that, in GdMn2Ge2, a first-order transition from a collinear antiferromagnetic to a collinear ferrimagnetic state appears with decreasing temperature at Tt3, below the Néel temperature TN. In Gd1−xLaxMn2Ge2 compounds with x=0.05 and 0.075, after ordering ferrimagnetically at Tt1, two kinds of first-order transitions from a canted ferrimagnetic to a non-collinear antiferromagnetic state and from a non-collinear antiferromagnetic to a reentrant canted ferrimagnetic state occur at Tt2 and Tt3. In Gd0.925La0.075Mn2Ge2, a field-induced metamagnetic transition from non-collinear antiferromagnetism to canted ferrimagnetism occurs at relatively low fields, accompanied by fractal like multi-step transitions, the so called “devil's stair-case”. Furthermore, a negative giant magnetoresistance (GMR) effect (Δρ/ρ15%) was observed at the field-induced metamagnetic transition. The mechanism of this negative GMR was clarified by comprehensive measurements of the resistivity on single crystals Gd0.925La0.075Mn2Ge2 and TbMn2Ge2. With further increasing x, only canted ferrimagnetism appears with a compensation temperature for 0.10<x<0.40, whereas no compensation behavior appears for x>0.50. The phase diagram obtained indicates that the overall magnetism is controlled by the Mn–Mn intralayer distance in the tetragonal c-plane, reflecting the two-dimensional arrangement of Mn atoms.  相似文献   

7.
ErCu2Si2 crystallises in the tetragonal ThCr2Si2-type crystal structure. In this paper results of magnetometric, electrical transport, specific heat as well as neutron diffraction are reported. Results of electrical resistivity and specific heat measurements performed at low temperature yield existence of magnetic ordering roughly at 1.3 K. These results are in concert with neutron diffraction measurements, which reveal simple antiferromagnetic ordering between 0.47 and 1.00 K. At temperatures ranging from 1.00 up to 1.50 K an additional incommensurate magnetic structure was observed. The propagation vector k=(0;0;0.074) was proposed to describe magnetic reflections within the amplitude modulated magnetic structure. Basing on specific heat studies the crystal field levels splitting scheme and magnetic entropy were calculated.  相似文献   

8.
The antiferromagnetically ordered, moderate heavy fermion UCu5Al, crystallises in the original tetragonal I4/mmm structure, which remains unchanged in the U1−xThxCu5Al solid solutions up to x≈0.35. Above this composition, other solid solutions with general chemical formula (U1−xThx)(Cu1−yAly)5 are formed, having a different type of structure, namely the hexagonal CaCu5-type. Below TN=18 K UCu5Al orders with a sine-modulated, incommensurate magnetic structure described by a wave vector k=(0, 0, 0.55) and the moment amplitude of 1.45(5) μB at 1.4 K.  相似文献   

9.
A neutron diffraction study of polycrystalline PrCu2Si2 [1], PrCu2Ge2 [2], PrFe2Ge2 [3] and NdFe2Ge2 [4] intermetallics carried out at liquid helium temperature shows the presence of a collinear antiferromagnetic order below TN = 19 ± 1 K [1], TN = 16 ± 1 K [2], TN = 9 ± 1 K [3] and 13 ± 1 K [4]. Magnetic moment, parallel to the c-axis is localized on RE ions only. The magnetic structure of these compounds consists of ferromagnetic layers perpendicular to the c-axis coupled antiferromagnetically with sequence +-+- for PrCu2Si2 and PrCu2Ge2 and +--+ for PrFe2Ge2 and NdFe2Ge2. The RE moments amount close to the free ion values for Fe containing compounds but are smaller in those containing Cu suggesting a fairly strong influence of crystal field.  相似文献   

10.
This paper reports a neutron powder diffraction study of CaMn2Sb2 in the temperature range of 20–300 K. Collinear long-range antiferromagnetic order of manganese ions occurs below 85 K, where a transition is observed in the dc magnetic susceptibility measured with a single crystal. Short-range magnetic order, characterized by a broad diffraction peak corresponding to a d-spacing of approximately 4 Å (2θ≈22°), is also observed above 20 K. The long-range antiferromagnetic order is indexed by the chemical unit cell, indicating a propagation vector k=(0 0 0), with a refined magnetic moment of 3.38 μB at 20 K. Two possible magnetic models have been identified, which differ in spin orientation for the two manganese ions with respect to the ab plane. The model with spins oriented at a 25±2° angle relative to the ab plane gives an improved fit compared to the other model in which the spins are constrained to the ab plane. Representational analysis can account for a model involving a c-axis component only by the mixing of two irreducible representations.  相似文献   

11.
We present the temperature magnetic phase diagram of the compound DyFe4Ge2 determined from neutron diffraction data for the entire magnetically ordered regime. DyFe4Ge2 undergoes at a simultaneous structural and magnetic transition of second order (or weakly first order) followed by two subsequent isostructural first-order magnetic transitions at and Tic1=28K:
The re-entrant lock-in magnetic phase is stable in the high-temperature range Tic2TN and in the low-temperature range 1.5 K–Tic1 while the incommensurately modulated magnetic phase is sandwiched in the intermediate range Tic1Tic2 between the two commensurate phases. The wave vector q2 has a temperature-dependent length with a minimum in the middle of the incommensurate range and corresponds to a multiaxial amplitude modulated phase. Symmetry analysis leads for both propagation vectors in Cmmm to a twofold and fourfold splitting of the tetragonal Dy 2b site and the Fe 8i sites, respectively. The low temperature and the phases correspond to 3D canted magnetic structures described by the irreducible representations (Irreps) Γ2+Γ3 while the high-temperature q1 phase to 2D canted magnetic structures described by a single Irrep Γ2. The Tic2 transition is connected with reorientations of both Fe and Dy moments.  相似文献   

12.
We have investigated the magnetic ordering and the incommensurate-commensurate phase transition in EuAs3 by zero-field (ZF) and longitudinal-field μSR. In the commensurate phase, stable at temperatures below TL=10.3 K, the ZF muon signal exhibits oscillations corresponding to four muon precession frequencies the lowest of which behaves anomalously. The muon signal shows no oscillation but exponential decay in the incommensurate phase stable in temperature range from TL≈10.3 K up to TN≈11 K. The temperature dependence of the fitted relaxation rate shows divergence-like behaviour at the ordering temperature TN≈11 K and also at the lock-in transition TL≈10.3 K. The results are in qualitative agreement with those previously obtained by neutron and X-ray magnetic scattering investigations except for the anomalous temperature dependence of the lowest frequency in the commensurate phase. We propose a model for this anomalous behaviour.  相似文献   

13.
In this work we present a magnetoresistance study on the CeRu2Ge2 compound. We analyze the ρ(T) curves for several applied magnetic fields using the electron–magnon scattering model for a ferromagnetic spin arrangement. From this analysis, the field dependence of the energy gap of the magnon spectrum is obtained. The magnetoresistance ρ(H) at various temperatures arises from a normal metal contribution with an additional scattering mechanism due to electron–magnon interaction.  相似文献   

14.
In continuous magnetic fields H up to 28 T, we have studied the out-of-plane transport properties and tunneling characteristics of high-quality nondoped single crystals of the Bi-cuprate family: Bi2Sr2CuO6+δ (Bi2201), Bi2Sr2CaCu2O8+δ (Bi2212) and Bi2Sr2Ca2Cu3O10+δ (Bi2223) grown by an identical method. For all compounds the out-of-plane magnetotransport ρc(H) is negative in the temperature region where ρc(T) shows in the normal state a semiconducting-like temperature dependence. The negative magnetoresistance of ρc corresponds to the suppression of the semiconducting temperature dependence of ρc(T) which is found to be isotropic. For the Bi2201 compound, where the normal state can be reached in the available magnetic fields (28 T), a nearly complete suppression of the low-temperature upturn in ρc(T) is observed in the highest magnetic fields with a tendency towards a metallic behavior down to the lowest temperatures (0.4 K). Using the break-junction technique, especially for the Bi2212 and Bi2232 compounds, a clear superconducting gap structure can be observed. Both for temperatures above the critical temperature and for magnetic fields above the upper critical field, a pseudogap structure remains present in the tunneling spectra. The applied magnetic fields yield a stronger suppression of the superconducting state compared to that of the normal-state gap structures as manifested in ρc(T) transport and tunneling.  相似文献   

15.
Physical properties of NdAu2Ge2, crystallising with the tetragonal ThCr2Si2-type crystal structure, were investigated by means of magnetic, calorimetric and electrical transport measurements as well as by neutron diffraction. The compound exhibits antiferromagnetic ordering below TN=4.5 K with a collinear magnetic structure of the AFI-type. The neodymium magnetic moments are parallel to the c-axis and amount to 1.04(4) μB at 1.5 K. The observed magnetic behaviour is strongly influenced by crystalline electric field effect.  相似文献   

16.
Neutron diffraction studies and magnetic measurements on the compounds TbNi2Si2 (1), HoCo2Si2 (2) and TbCo2Si2 (3) revealed a collinear antiferromagnetic order below TN = 10 ± 1 K (1), TN = 13 ± 1 K (2) and TN = 30 ± 2 K (3) with the rare earths moments oriented along the c-axis [m0 = 8.8 ± 0.2 μB (1), m0 = 8.1 ± 0.2 μB (2), m0 = 8.8 ± 0.2 μB (3)] and the corresponding wavevector are k = [12120] (1) andk = [ 0 0 1] (2) (3). The magnetic structure of the compounds HoCo2Si2 and TbCo2Si2 consists of ferromagnetic layers perpendicular to the c-axis coupled antiferromagnetically (+?+?) while for TbNi2Si2 the ordering within (0 0 1) plane is antiferromagnetic and the planes (0 0 1) are indeed decoupled.  相似文献   

17.
Magnetic field (0–4 T) and temperature dependencies (4.2–320 K) of the electrical resistance of Gd5(Si1.5Ge2.5), which undergoes a reversible first-order ferromagnetic↔paramagnetic phase transition, have been measured. The electrical resistance of Gd5(Si1.5Ge2.5) indicates that the magnetic phase transition can be induced by both temperature and magnetic field. The temperature dependence of the electrical resistance, R(T), for heating at low temperatures in the zero magnetic field has the usual metallic character, but at a critical temperature of Tcr=216 K the resistance shows a 20% negative discontinuity due to the transition from the low-temperature high-resistance state to the high-temperature low-resistance state. The R(T) dependence for cooling shows a similar but positive 25% discontinuity at 198 K. The isothermal magnetic field dependence of the electrical resistance from 212T224 K indicates the presence of temperature-dependent critical magnetic fields which can reversibly transform the paramagnetic phase into the ferromagnetic phase and vice versa. The critical magnetic fields diagram determined from the isothermal magnetic field dependencies of the electrical resistance of Gd5(Si1.5Ge2.5) shows that the FM↔PM transition in zero magnetic field on cooling and heating occurs at 206 and 213 K, respectively. The full isothermal magnetic filed hysteresis for the FM↔PM transition is 2 T, and the isofield temperature gap between critical magnetic fields is 7 K.  相似文献   

18.
The magnetic properties of the PrPd2Ge2 and NdPd2Ge2 compounds have been investigated by magnetic measurements, specific heat measurements and neutron diffraction experiments. The PrPd2Ge2 compound orders antiferromagnetically below TN=5.0(2) with an original modulated magnetic structure characterized by a magnetic cell three times larger than the chemical one by tripling of the c parameter. The palladium atom is non magnetic and the Pr moments are parallel to the c-axis with a value of ≈2.0 μB at 2 K. The specific heat measurements clearly detect a low temperature transition for the NdPd2Ge2 compound, interpreted as a Nd sublattice antiferromagnetic ordering below 1.3(2) K.  相似文献   

19.
CeAgAs2, an HfCuSi2 like layered pnictide, orders antiferromagnetically at TN=6.2(1) K. The ordering process was monitored in neutron diffraction experiments in the temperature range 10 K≥T≥3.5 K. At T=4 K the lattice parameters are a=5.7438(1) Å, b=5.7696(1) Å and c=21.0067(2) Å. The diffraction pattern of the antiferromagnetic phase with a propagation vector k=[0,0,0] point towards ferromagnetically ordered moments in Ce layers stacked along [001], the individual layers are coupled antiferromagnetically with a +− −+type sequence. The alignment of moments within the Ce layers cannot be determined reliably from the experimental data so that two different structure models are discussed. The proposed metamagnetic transition was confirmed by diffraction experiments applying an external magnetic field at T<TN. In the interval 4 K≤T≤6 K, a relatively small field of μ0H≈0.3 T suffices to fully suppress the antiferromagnetic ordering. The effect is completely reversible yet subject to hysteresis: After switching off the external field at any T<TN the magnetic reflections gain their original intensity within several 10 min indicating the restoring of the antiferromagnetic phase.  相似文献   

20.
The magnetic properties of the intermetallic compound Dy2CuIn3 have been investigated. Ac and dc-susceptibility measurements indicate an onset of antiferromagnetic ordering at TN=19.5 K and an additional frequency dependent transition at Tds∼9 K. Neutron diffraction studies confirm the ordered transition at 19.5±1 K. The magnetic unit cell can be described by the propagation vector k=(0.25,0.25,0) with the magnetic moment μ=2.63(4)μB/Dy3+ parallel to the c-axis. Nevertheless, neutron diffraction reveals no additional magnetic phase transition around or below 9 K, which suggests that, at lower temperatures, a spin glass state may be formed in coexistence with the antiferromagnetic mode as a result of frustration and the antagonism between ferromagnetic and antiferromagnetic exchange interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号