首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied electrochemical vibrational and energy properties of CO/Pt(111) in the framework of periodic density functional theory (DFT) calculations. We have used a modified version of the previously developed Filhol-Neurock method to correct the unphysical contributions arising from homogeneous background countercharge in the case of thick metallic slabs. The stability of different CO adsorption sites on Pt(111) (Top, Bridge, Hcp, Fcc) has been studied at constant electric field. The energies are dominated by the surface dipole interaction with the external electric field: a strong positive electric field favors the surfaces with the lower dipole moment (that correspond to the ones with the lower coordination). The Stark tuning slope of the CO stretching frequency for a Top site was calculated for different surface coverages in very good agreement with both experimental and other theoretical results. Finally, we have performed an analysis of the origin of Stark shifts showing that the total Stark effect can be split into two competing components. The first one corresponds to the direct effect of charging on the C-O chemical bond: it is referred as an electrochemical effect. The second is the consequence of the surface dipole interaction with the applied electric field that modifies the C-O distance, inducing a change of the C-O force constant because of C-O bond anharmonicity: it is referred as the electromechanical effect. In the CO/Pt(111) case, the dominant contribution is electromechanical. The electrochemical contribution is very small because the electronic system involved in the surface charging is mostly non-bonding as analyzed by looking at the surface Fukui function.  相似文献   

2.
We compare the stability of various structures of high coverage self-assembled monolayers (SAMs) of short alkylthiolates, S(CH(2))(n-1)CH(3) (= C(n)), on Ag(111) and Au(111). We employ: (i) the ab initio thermodynamics approach based on density functional theory (DFT) calculations, to compare the stability of SAMs of C(1) (with coverages Θ = 3/7 and 1/3) on both substrates, and (ii) a set of pairwise interatomic potentials derived from second-order M?ller-Plesset (MP2) perturbation theory calculations, to estimate the role of chain-chain (Ch-Ch) interactions in the structure and stability of SAMs of longer chain alkylthiolates. For C(1)/Ag(111) (C(1)/Au(111)) the SAM with Θ = 3/7 is more (less) stable than for Θ = 1/3 in a wide range of temperatures and pressures in line with experiments. In addition, for the molecular densities of SAMs corresponding to Θ = 3/7 and 1/3, the MP2-based Ch-Ch interaction potential also predicts the different chain orientations observed experimentally in SAMs of alkylthiolates on Ag(111) and Au(111). Thus, for short length alkylthiolates, a simple model based on first principles calculations that separately accounts for molecule-surface (M-S) and Ch-Ch interactions succeeds in predicting the main structural differences between the full coverage SAMs usually observed experimentally on Ag(111) and Au(111).  相似文献   

3.
By means of density functional theory calculations, we investigate work functions, energy level alignments, charge transfers, and tunneling characteristics of CH3- and CF3-terminated alkane- and diphenylthiol monolayers on Au(111). While the alignments of the energy levels and the charge transfers at the metal-molecule interface are found to be determined by the value of the clean Au surface work function relative to the HOMO ionization potential (IP) at the thiolate end of the monolayer, the change of work function for the modified Au(111) surface is dominated by the properties of the thiolate monolayer, including the character, saturated or conjugated, of the molecule and the chemical nature and orientation of the terminal group. The tunneling currents through the adsorbed molecular monolayers are calculated using the Tersoff-Hamann approach. The computed difference between the I-V characteristics for the CH3- and CF3-terminated alkanethiol monolayers agree well with available experimental data. The energy barrier at the metal-molecule interface, the molecular electronic structure, and the IP of the terminal group are the key parameters which determine the tunneling properties.  相似文献   

4.
We have investigated and learned to control switching of oligo(phenylene ethynylene)s embedded in amide-containing alkanethiol self-assembled monolayers on Au{111}. We demonstrate bias-dependent switching of the oligo(phenylene ethynylene)s as a function of the interaction between the dipole moment of the oligo(phenylene ethynylene)s and the electric field applied between the scanning tunneling microscope tip and the substrate. We are able to invert the polarity of the switches by altering their design-inverting their dipole moments. For appropriately designed switches and matrix molecules, the conductance states are stabilized by intermolecular hydrogen bonding. These results further support the hypothesis that conductance switching in these molecules is due to hybridization changes at the molecule-substrate bonds due to tilting of the switch molecules.  相似文献   

5.
We present density functional theory calculations of the electronic structure and tunneling characteristics of alkanethiolate monolayers on Au(111). We systematically analyze radical3 x radical3 full coverage monolayers of SC6H12X molecules with different terminal groups, X=CH3, NH2, SH, OH, COOH, OCH3, on defect-free ("perfect") Au(111). We also study the influence of the surface-molecule bonding structure by comparing the properties of monolayers of SC6H12CH3 molecules on the perfect surface and on Au(111) surfaces with vacancies or adatoms. The tunneling currents (I) through the adsorbed monolayers with a single chemical contact have been calculated within the Tersoff-Hamann approach for voltages between -1 and +1 V. Computed currents are found to depend linearly on V at low voltage, with typical values of approximately 60 and 150 pA/molecule at 0.2 and 0.5 V, respectively, in good agreement with several experimental data. Computed tunneling currents show also a significant dependence on both the terminal group X and the surface structure. In particular, in order of decreasing intensities, currents for the different end groups are NH2 approximately SH>CH3>OH>OCH3>COOH. The relationships between the tunneling current, the work function of the surface+SAM, and the lineup of the HOMO with respect to the Fermi energy of the metal surface are examined.  相似文献   

6.
We have isolated at T < 150 K a weakly adsorbed dimethyl disulfide (DMDS) layer on Au(111) and studied how the vibrational states, S core hole level shifts, valence band photoemission, and work function measurements evolve upon transforming this system into chemisorbed methylthiolate (MT) self-assembled monolayers (SAM) by heating above 200 K. By combining these observations with detailed theoretical electronic structure simulations, at the density functional level, we have been able to obtain a detailed picture of the electronic interactions at the interface between Au and adsorbed thiolates and disulfides. All of our measurements may be interpreted with a simple model where MT is bound to the Au surface with negligible charge transfer. Interfacial dipoles arising from Pauli repulsion between molecule and metal surface electrons are present for the weakly adsorbed DMDS layer but not for the chemisorbed species. Instead, for the chemisorbed species, interfacial dipoles are exclusively controlled by the molecular dipole, its interaction with the dipoles on neighboring molecules, and its orientation to the surface. The ramifications of these results for alignment of molecular levels and interfacial properties of this class of materials are discussed.  相似文献   

7.
The interactions of Na+ and Au+ cations with an Au(111) surface in the presence and absence of water molecules were investigated using Au18 and Au22 cluster models and the MP2 method with a triple-zeta valence basis set. The interactions between Na+ ions and the Au(111) surface were found to be primarily electrostatic, contrary to the much stronger Au+-Au(111) interactions that were dominated by orbital contributions. The largest CP-corrected MP2 adsorption energies were -156.9 kJ/mol for Na+ and -478.7 kJ/mol for Au+. When hydrated, Na+ prefers to be completely surrounded by water molecules rather than adsorbed to the surface, whereas Au+ remains adsorbed to the surface as water molecules bond with each other and with the Au surface. CP correction did not change the relative adsorption energy trends of Na+ or Au+ ions, but it had an effect on the interaction energy trends of the hydrated cations because of the weak water-surface and water-water interactions.  相似文献   

8.
研究Au(111)和Au(100)表面非离子型氟表面活性剂FSN自组装膜的电化学行为.电化学扫描隧道显微术和循环伏安法测试表明,在0~0.8 V电位区间,FSN自组装膜未发生氧化还原,均一性好,可稳定地存在于电极表面,并显著抑制硫酸根离子在电极表面的吸附和Au单晶表面的重构.在FSN自组装膜Au单晶电极的初始氧化阶段,Au(111)表面有少量突起,而Au(100)表面呈现台阶剧烈变化,但FSN自组装膜的吸附结构没有改变.与Au(100)表面相比,Au(111)表面形成的FSN自组装膜可更有效地抑制Au表面的氧化.  相似文献   

9.
Adsorption states of dioctyl dichalcogenides (dioctyl disulfide, dioctyl diselenide, and dioctyl ditelluride) arranged on Au(111) have been studied by X-ray photoelectron spectroscopy (XPS), infrared-visible sum-frequency generation (SFG), and ultraviolet photoelectron spectroscopy (UPS). XPS measurements suggest that dioctyl dichalcogenides dissociatively adsorbed on Au(111) surfaces to form the corresponding monolayers having chalcogen-gold covalent bonds. The elemental compositions of octanechalcogenolates on Au(111) indicate that the saturation coverages of the octyl heavy chalcogenolate (OcSe, OcTe) monolayers are lower than that of the octanethiolate (OcS) self-assembled monolayers (SAMs). The SFG observations of the CH(2) vibrational bands for the heavy chalcogenolate monolayers strongly suggest that a discernible amount of gauche conformation exists in the monolayers, while OcS SAMs adopt highly ordered all-trans conformation. The intensity ratio of the symmetric and asymmetric CH(3) stretching vibration modes measured by SFG shows that the average tilt angle of the methyl group of the OcSe monolayers is greater than that of the OcS SAMs. The larger tilt angle of the methyl group and the existence of a discernible amount of gauche conformation in the OcSe monolayers are due to the lower surface coverage of the OcSe monolayers compared with the OcS SAMs. The smaller polarization dependence in the angle-resolved UPS (ARUPS) spectra of the OcSe monolayers than that of the OcS SAMs is caused by the more disordered structures of the alkyl chain in the former. XPS, SFG, and ARUPS measurements indicate a similar tendency for the OcTe monolayers. The density of states (DOS) observed by UPS at around 1.3 eV for OcS adsorbed on Au(111) is considered to be the antibonding state of the Au-sulfur bond. Similar DOS is also observed by UPS at around 1.0 eV for the OcSe monolayers and at approximately 1.6 eV for the OcTe monolayers on Au(111).  相似文献   

10.
We present an STM study of self-assembled monolayers of 2,3,6,7,10,11-undecalkoxy-substituted triphenylene (T11) at the n-tetradecane/Au(111) interface under ambient conditions. T11 molecules self-organize as paired rows with molecules lying flat on the surface in an antiparallel position. Three alkyl chains of each T11 molecule align along the 110 direction of the underlying Au(111) substrate. The association of T11 in molecular pairs appears to result from a substrate-induced mechanism governed by the strong anisotropic interaction between T11 alkyl chains and Au(111).  相似文献   

11.
12.
The self-assembled monolayers (SAMs) of 1-adamantanethiolate and its derivatives on Au(111) surface were investigated. Density functional theory (DFT) calculation indicates that the most stable configuration for absorption is at the face centered cubic (fcc)-bridge site. Canonical ensemble molecular dynamics (MD) simulations were carried out to study the structures and energies of the SAMs. The ordered structures of the SAMs were analyzed by means of radial distribution function and the relative stability of the SAMs was compared. It was concluded by the comparison of various contributions to the SAM formation energy that the formation of the SAMs was determined by the intermolecular nonbonding interaction and the chemical bonding interaction of sulfur and gold.  相似文献   

13.
14.
Chloroaluminum phthalocyanine (ClAlPc), an important optoelectronic molecule with a permanent dipole moment pointing from the Pc ring to the ending Cl atom, adsorbed on Au(111) in either Cl-up or Cl-down configuration. Scanning tunneling microscopy/spectroscopy measurements revealed that at the centers of Cl-up and Cl-down molecules, the local work functions changed oppositely with respect to the Au(111) substrate. At their Pc lobes, however, the local work functions unanimously increased due to charging effect of the indole lobes in the ClAlPc molecule.  相似文献   

15.
In this paper, we report the self-assembly, electrical characterization, and surface modification of dithiolated phenylene-ethynylene oligomer monolayers on a Au(111) surface. The self-assembly was accomplished by thiol bonding the molecules from solution to a Au(111) surface. We have confirmed the formation of self-assembled monolayers by scanning tunneling microscopy (STM) and optical ellipsometry, and have studied the kinetics of film growth. We suggest that self-assembled phenylene ethynylene oligomers on Au(111) surfaces grow as thiols rather than as thiolates. Using low-temperature STM, we collected local current-voltage spectra showing negative differential resistance at 6 K.  相似文献   

16.
Alkanethiol self-assembled monolayers on Au(111) are widely studied, yet the exact nature of the sulfur-gold bond is still debated. Recent studies suggest that Au(111) is significantly reconstructed, with alkanethiol molecules binding to gold adatoms on the surface. These adatoms are observed using scanning tunneling microscopy before and after removing the organic monolayer with an atomic hydrogen beam. Upon monolayer removal, changes in the gold substrate are seen in the formation of bright, triangularly shaped islands, decreasing size of surface vacancy islands, and faceting of terrace edges. A 0.143 +/- 0.033 increase in gold coverage after monolayer removal shows that there is one additional gold adatom for every two octanethiol molecules on the surface.  相似文献   

17.
We investigate the structure of nonionic fluorosurfactant zonyl FSN self-assembled monolayers on Au(111) and Au(100) in 0.05 M H(2)SO(4) as a function of the electrode potential by electrochemical scanning tunneling microscopy (ECSTM). On Au(111), a (3(1/2) × 3(1/2))R30° arrangement of the FSN SAMs is observed, which remains unchanged in the potential range where the redox reaction of FSN molecules does not occur. On Au(100), some parallel corrugations of the FSN SAMs are observed, which originate from the smaller distance and the repulsive interaction between FSN molecules to make the FSN molecules deviate from the bridging sites, and ECSTM reveals a potential-induced structural transition of the FSN SAMs. The experimental observations are rationalized by the effect of the intermolecular interaction. The smaller distance between molecules on Au(100) results in the repulsive force, which increases the probability of structural change induced by external factors (i.e., the electrode potential). The appropriate distance and interactions of FSN molecules account for the stable structure of FSN SAMs on Au(111). Surface crystallography may influence the intermolecular interaction through changing the molecular arrangements of the SAMs. The results benefit the molecular-scale understanding of the behavior of the FSN SAMs under electrochemical potential control.  相似文献   

18.
We recently discovered that a linear multifunctional trimethylsilylacetylene (TMSA) compound forms long-range and highly stable self-assembled monolayers (SAMs) on reconstructed Au(111). To better understand the interactions governing self-assembly in this new system, we synthesized a series of homologue organosilanes and performed scanning tunneling microscopy (STM) measurements at the Au(111)/n-tetradecane interface. The four TMSA-terminated linear silanes that we synthesized self-assemble in similar ways on gold, with the molecules standing upright on the surface. In contrast, compounds with a slightly modified terminal group but the same polyunsaturated linear chain above the TMSA head do not self-assemble. In particular, substituting a methyl group of TMSA with a more bulky one prevents self-assembly. Removing the C triple bond C triple bond of TMSA or substituting the Si atom by a C atom also hinders self-assembly. Finally, substituting one methyl group of TMSA by a hydrogen atom induces self-assembly but in a different geometry, with the molecules lying flat on the gold surface in a quasi-epitaxy mode. Our molecular approach demonstrates the key role played by the TMSA head in self-assembly, its origin being twofold: 1) the TMSA layers are commensurate to the Au(111) adlattice along the <112> direction, and 2) the C triple bond C triple bond of TMSA activates the Si atom and induces the creation of a surface Si-Au chemical bond. The highly stable TMSA-based SAMs appear then as promising materials for applications in surface modification.  相似文献   

19.
Through rigorous control of preparation conditions, organized monolayers with a highly reproducible structure can be formed by solution self-assembly of octadecanethiol on GaAs (001) at ambient temperature. A combination of characterization probes reveal a structure with conformationally ordered alkyl chains tilted on average at 14 +/- 1 degrees from the surface normal with a 43 +/- 5 degrees twist, a highly oleophobic and hydrophobic ambient surface, and direct S-GaAs attachment. Analysis of the tilt angle and film thickness data shows a significant mismatch of the average adsorbate molecule spacings with the spacings of an intrinsic GaAs(001) surface lattice. The monolayers are stable up to approximately 100 degrees C and exhibit an overall thermal stability which is lower than that of the same monolayers on Au[111] surfaces. A two-step solution assembly process is observed: rapid adsorption of molecules over the first several hours to form disordered structures with molecules lying close to the substrate surface, followed by a slow densification and asymptotic approach to final ordering. This process, while similar to the assembly of alkanethiols on Au[111], is nearly 2 orders of magnitude slower. Finally, despite differences in assembly rates and the thermal stability, exchange experiments with isotopically tagged molecules show that the octadecanethiol on GaAs(001) monolayers undergo exchange with solute thiol molecules at roughly the same rate as the corresponding exchanges of the same monolayers on Au[111].  相似文献   

20.
We have studied zinc phthalocyanine (ZnPc) and iron phthalocyanine (FePc) thick films and monolayers on Au(111) using photoelectron spectroscopy and x-ray absorption spectroscopy. Both molecules are adsorbed flat on the surface at monolayer. ZnPc keeps this orientation in all investigated coverages, whereas FePc molecules stand up in the thick film. The stronger inter-molecular interaction of FePc molecules leads to change of orientation, as well as higher conductivity in FePc layer in comparison with ZnPc, which is reflected in thickness-dependent differences in core-level shifts. Work function changes indicate that both molecules donate charge to Au; through the π-system. However, the Fe3d derived lowest unoccupied molecular orbital receives charge from the substrate when forming an interface state at the Fermi level. Thus, the central atom plays an important role in mediating the charge, but the charge transfer as a whole is a balance between the two different charge transfer channels; π-system and the central atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号